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PREFACE

This volume contains the main papers from the workshop on "Relativistic
Action at a Distance: Classical and Quantum Aspects", held in Barcelona,
June 15-21, 1981, in which we have tried to review the work and progress
in this field over the last twenty years. One of the main aims of the
meeting was to encourage communication and discussion among physicists
who are working in this subject from different approaches. Our inten-—
tion was to break the isolation that scientists from various lines of
work often find themselves in, and who thus have often ignored each
other.

Relativistic action—-at-a-distance dynamics is at the present time
a rather heterodox approach to interacting particle systems, particular-
ly in the present panorama of theoretical physics clearly dominated by
field theories. The reasons for this prevalence are obvious. We have,
first, the success of Maxwell's electromagnetic field theory where the
various attempts of Newtonian action-at-a-distance theories failed.
Secondly, Maxwell's field theory supplies a suitable framework to ac-
count for radiation phenomena which, apparently, cannot be explained
in the framework of an action-at—-a-distance theory - actually, the first
theory which succeeded in accounting for electromagnetic radiation was
Wheeler and Feynman's electrodynamics (1949).

Another important factor has been the apparent incompatibility be-
tween Poincaré invariance and instantaneous action at a distance which
has been often identified with "interaction transmitted at infinite
speed between simultaneous states of the particles".

Nevertheless, in spite of their many successes, some important pro-
blems of field theories remain unsolved. Think, for instance, of the
interaction of a particle with its own field - self-interaction. The
energy associated with it is infinite, a situation which is obviously
absent in an action-at-a-distance theory. This difficulty is insurmount=-
able within classical field theories, and the renormalization techniques
of QFT give satisfactory solutions in certain cases (electro-weak, QCD),
but quantum gravitation still cannot be renormalized. Also there is the
remarkable fact that, in dealing with bound states, quantum field theory
leads to Bette-Salpeter equations quite similar to the equations that
one hopes to deal with in an action-at-a-distance quantum theory.

During the last three decades a revival of action-at-a-distance
theories has taken place which has taken relativistic invariance into
account. A good review of the first half of this period is‘supplied by
the reprint collection edited by E. Kerner, The Theory of Action at a




v

Distance in Relativistic Particle Dynamics (1972). At that time several

branches had already appeared which dealt with the subject: on one hand,
the non-instantaneous. action-at-a-distance theories - Whéeler and Feyn-—
man's electrodynamics (1949) and the more general Van Dam and Wigner's
theory (1965) = and, on the other hand, the instantaneous action-at-a-
distance theories. This last group can be further divided into two sub-
branches: Dirac's Hamiltonian formalism (1949) and its subsequent de-
velbpment, and predictive relativistic meéhanics. Whereas the first for-
malism plans the construction of a canonical realization of the Poincaré
group on the phase space of the system of particles, the second empha-
sizes the fact that the world line of each particle must be Poincaré in-
variant. The no-interaction theorems must be placed between both sub-
branches., These theorems state that conditions a) canonical realization
of the Poincaré group and b) considering the positions of the particles
as canonical coordinates are uniquely compatible in the special case of
free-particle systems.

Since the collection compiled by Kerner was published, these branches
have undergone further development. Moreover, new approaches have also
arisen, inspired either by Dirac's constraint Hamiltonian formalism

(Lectures on Quantum Mechanics, 1964) or by the singular Lagrangian one.

Both formalisms are canonical and manifestly covariant. The negative im-
plications of the no-interaction theorems are avoided by dealing not
with the whole phase space TM4N but with a qub—manifold of it.

After three decades of this relativistic revival, the action-at-a-
distance approach has not achieved the degree of development of field
theories, and a lot of work is still to be done. A first quantization of
action—-at-a-distance theories presents some difficulties which have not
yet been completely understood, while second quantization must be con-
tinued from the embryonic stage presented by Professor Droz-Vincent in
these proceedings, etc. The following conclusion, however, can already
be drawn: the situation is not one of "action-at-a-distance" versus
"field" theories; rather, both approaches must be considered as com-
plementary tools for achieving a deeper understanding of interaction
phenomena. ’

In the Barcelona workshop a review of these deVelopments was presented
and, as can be seen by a glance at the contents of this volume, we center
our attention on "instantaneous action-at-a-distance" theories. This
volume includes, besides the papers presented at the meeting, two con-
tributions by Professor R. Arens, who had been invited to lecture but
was prevented from attending the workshop. In his first paper Professor
Arens presents a way of generating solutions to the Droz-Vincent's
equations by means of diffeomorphisms of the phase space of a free-
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particle system. In the second, he proves the existence of interacting
two-particle systems under the assumptions of symmetry, dilation and
Poincaré invariance.

The contribution of Professor R.N. Hill, who was one of the pioneers
of predictive relativistic mechanics, deals with the origins of his
approach. Part of the further work in this branch is presented in two
lectures by Professor P. Droz-Vincent. The first treats the multi-time
covariant formalism ana the a priori Hamiltonian approach, where the
result of the no-interaction theorems are avoided by giving up the
canonical character of the position coordinates. The second lecture
presents an attempt to second quantize a system of interacting particles.
Closing the set of conferences which we have classified as predictive
relativistic mechanics, Professor L. Bel's lecture deals with retarded
equations and states that equations of this kind predictivize spontane-
ously in the cases of constant retardation and of electromagnetic and
gravitational interactions.

From another point of view Professor F. Coester presents a Hamiltonian
formalism which could be classified in the line of Foldy's previous work.
In the first lecture the general framework is presented and, in the sec~-
ond, it is applied to some particular scattering problems.

The singular Lagrangian theory applied to relativistic particle
dynamics is presented in this volume by Professor G. Longhi, who details
the study of a two-particle system in this framework. He also discusses
the problem of the separability of the interactions for two- and three-
particle systems.

Finally, the contributions of Professor F. Rohrlich and of Professor
I. Todorov envisage the problem of relativistic interacting N-particle
systems from the viewpoint of the constrained Hamiltonian formalism,

The method developed by the first author is based upon the fact that
dealing with a covariant model implies the introduction of 2N spurious
degrees of freedom which must be eliminated afterward. This elimination
is carried out by means of 2N second-class constraints; N amongst them
define the general mass shell and the remaining N constraints depend on
a scalar parameter and are called fixations because they determine a
particular motion of the system.

Professor Todorov's method uses the same constraint formalism, empha-=
sizing the geometric invariants though. So, in this approach an important
role in the definition of the physical phase space is assigned to the
geometrical trajectory of the system, i.e., considered independently
of any parametrization. This physical phase space is defined by the
foliation that the world surfaces introduced onto the general mass shell.
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2~-PARTICLE INTERACTIONS PRODUCED BY
TRANSFORMATIONS OF PHASE SPACE

Richard Arens

Mathematics Department
University of California, Los Angeles
Los Angeles, CA 90024

1. Introduction

The motions of a pair of interacting particles are given by a set

M of 2-dimensional submanifolds of 16-~dimensional cartesian space

R16 (which we took the liberty of calling phase space in the title).
If the particles are in fact non-interacting, then these motions form
a set MO of flat 2-dimensional submanifolds.

The idea is to transform E16 (more precisely an appropriate subset
of it) onto itself sd as to transform MO into a class M of 2-dimen-
sional submanifolds capable of being regarded as the motions of a non-
zero, Poincaré-invariant interaction.

Necessary and sufficient properties for a map (Y %o produce such
an interaction are presented. It is proved that all interactions so
obtained have this property: if the particles appear to be at rest for
some observer, then they remain at rest for that observer (and thus
have parallel straight world lines for that motion).

2. N particle interactions

Let Tl(R4) be the set of vectors V in R' . Tet xl,...., xt

be the coordinates in R4 . Then xl?...,x4 ’ ﬁl,..., §4 are coor-
dinates in Tl(R4) where x(V) = a® for the vector
V= al Y,
while xl(V) is the x* coordinate of the base point of V .
A vector field in Tl(R4) is generically of the form
I: a.i 3_. 4_,‘-': L
xi i
Such a vector is called basic if the component ai is precisely = .
Consider the cartesian product
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TR x .. x TH®R*)  ( N factors). T (2.1)
If 14n<4N let a vector field on the space (2.1) of the form

Wi 72 )
= xt. - A .
be called n-basic. Here x; and i; refer to the xi and ii of
the n-th factor in (2.1).

A (second order) N particle interaction is characterized by N
vector fields TI;,...,Iy where I~ has the n-basic form (2.2) and

the various fields commute:l)

(1., T.]1=0 4¢ do, m< N (2.3)

The interaction is Poincaré invariant if each I, is invariant
under the action of the Poincaré group in (2.1).
Let Fn be the n-basic vector field

— .k
'Fn = U, gx—"‘b . (2.4)

Then F,,...,Fy define the zero-interaction,
We want to show when such a map ¢ of (2.1) onto itself can be
used to make a non-zero interaction.

Let
Lf:?‘-—-——# P (2.5)
be a smooth map of that part P of (2.1) on which all the u, are
timelike with uﬁ > 0 and (on which) the differences X, - X, are
spacelike .
If we have a map @ as in (2.5), then x;(cp(p) ) is the new coor-
dinate of p . We will denote it by X; (sor‘X; = x;o(( in convent-

ional notation). u;a(? we denote by Ui . Any set of four components
such as Xi,...,Xﬁ will be abbreviated by a single letter, here X -
Vector fields for us are differential operators (implicit in (2.3), and
explicit in (2.4) ). When a vector ¥ is applied to a function g ,

the result (of the differentiation) we denote by F (gl .

2.6 THEOREM. Suppose ¢ is 1:1 and maps P onto P , with a
smooth inverse Q'-l . Then the image vector field In of Fn under
q will be m~basic if and only if




RIZJ=0  for  wmim 2.6.1

F.lUa=0  for et (2.6.2)
and

FulZ0)= U, (2.6.3)

If these conditions are met then the ensuing interaction will be

non-zero if and only if

Fo [F.[X,1]1+ 0 for some m (2.6.4)

The interaction will be Poincaré invariant if Q' commutes with

the action of the Poincaré group in P .,

It is easy to vizualize how a map (¢ changes one vector into another,
and it is easy to see that if it is 1:1 , then it changes one vector
field into another. The formalism is that if (¢ changes vector field

F to vector field I +then :

I[%] = FL%M{J} ° ,_P"

for each differentiable function g defined on the manifold (say P ).
If I is to be n-basic, then

T,o= a8 2 4 ¢ £ type 2

" ¥yl erms of type =

_ ’ - -1 _
Therefore_lIn[xm] =0 for m#n.But I[x]=F]Ixoqlee =
Fn[xm]o? . Thus (2.6.1).(2.6.%3) follows from In[xﬁ] =u . (2.6.2)
follows from the fact that In should contain no 78/ uy for m#n.

So now
Q v
I = “xi + Aw eIt
If some A; is not O , the interaction is not zero. Now

A= L luad = B luwglog™ = Frivale g 2.7

Together with (2.6.3), this yields (2.6.4).
A generic set (Wl,...,WN) of world "lines" for the interaction



QéFl)"“"&(FN) is the image Q(Ij"“’LN) of a generic set
Ly,...,Ly of world lines for ¥, ,...,Fy . If T is any Poincard
map, then

(TOW), ..., Tiwa)) = ¢ (s, ..., L)

where LJ = T(Lm) . Thus our new interaction is Poincaré invariant.
This ends the proof of (2.6).

A motion for the interaction Il,...,IN is an N-dimensional sub-
manifold 8 to which each of the vector fields Il,...,IN is tangent.
When this 8 is projected into 84 by x, @ curve is obtained: the
world line of the n-~th particle for that motion. If @ satisfies (2.6)
then a motion 8 of El,...,EN is transformed by @ into a motion
for Iy,,..,Ty .

A typical motion for Fl,..,FN is obta;ned Zy selecting a point

a,€ B" and a timelike unit vector v, in R™ for each‘ E = 1,...
essyN . Then as the real parameters S1s++.y8y Vary over R~ , the
point

(apsvy, ..., 84+54%)

sweeps out a motion for Fl,...,FN . The image under ¢ is a motion

for Il,...,IN and the world line for the n-th particle is given in
4

R"™ by

Xo= KXo (Q+Sh, ..., Q463Vy) (2.8)

%2. Potential examples

Let the pseudoeuclidean or Minkowski scalar product of a and b

in B¥ be denoted by (ab) . Abbreviate X, - Xy

(UnlUn) (Un Xan)

by oy Define

nw =
%"" @'ln xwm) (“mn XM")

for m,n =1,2,....,8N . In terms of (2.4) prxmn] =0 if p # m,n,

and Fm[xmn] =u, . So

F; [%m‘:] =0 if mEn | (3.2)

and



If we let, for 2ll m=1,2,....,N,
Xu= %m -\-? Jmp Up (3.4)
where f depends only on the 8un (m fixed)and define

mp
U-m = En [Xm]

we obtain a @ which commutes with the Poincaré group and also sa-
tisfies 211 conditions of (2.6) except for the existence of an in-
verse on P . '

Assume therefore that it has an inverse.

Let us examine the resulting interaction.

By (2.9) and (3.2) the world lines are given by

XM'—_ Oy + 5'.“‘17” +Z. -‘m‘n'u-n. (3-5)
n

where the 1y "ingide" fmn have also to be expressed in terms of
the Vi and a. + s.V. .

The theory says that (3.5) should describe a curve. This can be
verified easily, as follows. For simplicity, let N =2 . Let X =
8, + VyS; , Xp = 85 + VoS, . This leads to

fu= (a0) + 2(a0)s +e*- lavy) 3 Grow)s )’ (3.6)

where a = a; - a, and s = Sq . The
Equation (3.6) shows that for vy = V5, , the gy, is constant so

that (3.4) is a straight line. When vy £ v, then g sr-® .

Sy evaporates.

One could therefore define f12 in such a way that flé—* 0 as

810> ~® . Then it would follow that the world line (3.5) always be-

comes more and more straight as s (=sl) tends to I o.

4., The case of two particles

For N =2 we can pretty well say how X1 and X2 should be

chosen to fulfill condition (2.6.1.) . Certainly we are not limited
to the form (3.6) .

Before proceeding, let us abbreviate Xl’XE’ul’uE’Xl’XE’ Ul’U2’
X5 and X12 by x,¥,u,v,X,Y,U,V,z and Z respectively.



When N = 2 we are justified, by the assumption of Poincaré inva-
riance, to assume space-time dimension 2+1 .

X - x is evidently translation invariant, and transforms like a
vector under the Lorentz group. In 3-dimensional space-time, u,v and
z together form a basis for such vectors (save for unimportant ex-

ceptions). Hence

X= Y+dz+§u+Y1r (4#.1)

where these Greek letters depend only on the Lorentz invariants of u ,
V,Z .
The following six functions are Lorentz-invariant: (uu), (uv), (vv),

G 5 = 2(vv)(uz) -~ 2(uv)(vz), G, = -2(uu)(vz) + 2(uv)(uz), and

12 21

(ww) (v (uz)
Tz | (vw) (v) (vd
(Fw @ (22

Any function & of these is also invariant. Conversely, if ol 1is
a Lorentz-invariant, then, on that set where

G= (uw)(vv) - (uv)? (4.1.1)

is not 0, A can be expressed in terms of these six functions.
Let U, =1, 2) be the class of those invariant functions ol
such that F [«x] = 0 . With the aid of the facts F, fu) = F, {v] =
, By [z] = -v , F2 [C(uz)] = -(uv), etc., one can easily seeiwhich
invariant functions are in 112 .

4.2, PROPOSITION. 142 consists of those functions expressible
in terms of (uu), (uv), (v,v), T° , and Gy, .

We now ask what (2.6.1) requires of X as in (4.1).

4.3. PROPOSITION. F,[X]= 0 precisely if o, and K*'(,ﬁ.;d—
belong to 'uz . Put another way, F2[X]= 0 if and only if ¢

I= x+oti+pu.+(‘o' %x)

where °‘-f=-$ are chosen from u 5 .

Passing over the trivial proof of this, we enquire what (2.6.3)
says about U , which (we recall) is Uo .



Proof. Suppose u and v have the same value b at some point
of P (see (2.5) ) . Select a point a of &% cuch that (ab) = 0,
where a is spacelike. Consider the point P, of P where u=v=>=,
and x = -y = a . The value of (4.6) is here the same as at the former
point. Suppose that value is - % . A simple computation shows

X= f&b+gk > V=Bb+§b
where the arguments in @,.”,§' are as in (#.6), whence independent
of a . Further, u = v makes G = O and as a matter of fact, it
makes U =b, V =1b (compare, for example, (4.5) ). Thus the point
‘P(pa) to which ¢ maps p, is independent of a . This violates
the crucial assumption that ¢ is 1:1 .

4.8, TEMMA, Let Q be that part of P (see (2.5) ) on which u=v

and (uz) = (vz) = 0 ., Let ¢ be a map of P—»P as above defining
an interaction of substitution type. Then (¢ maps @ onto itself, as

does ¢~ .
Proof. If u = v and (vz) = 0 then X ==x(¢) =x+ oz +Pu
+8u and Y=y -z +'§'u +§ u . Hence, using (#.6), Z = the
value of 2z at the image point is (1 + & + & )z . We must calculate
also U and V (the values of u and v at the image point). Certain-
1y G =0, so

V= u+ i+ b = &

and similarly

V= o
Thus (UZ) = (VZ) = 0 and V = U, Hence the image point is still in
Q .

Now let g be a point of Q where u=v=c,x=2a,y=>b,
whence ((b - a)e) = 0 . Let p be the point where (x-y)(l+ oy +& ) =
a-b,2((1°+$°)c+x+y=a+b,u=v=c,whence o, and o

means that o and X are evaluated as in (4.6) for u =c . This p
is surely a point of Q and one can easily verify that @ (p) is the
given q .

4,9, THEOREM, Let S be a motion for a symmetric, Poincaré- inva-

riant 2-particle interaction of substitution type. Suppose in some

Lorentz frame, the two particles executing the motion § are at rest
for t = 0 , Then in that frame they have been and will be forever at

rest.
Proof. Let the Lorentz frame in which they appear to be at rest



for t = 0 correspond to the cartesian coordinates. Let the positions
be (al,ag,aB,O) = a and (bl’bE’bB’o) b . We may suppose that u and
v = (0,0,0,1) = ¢ . Then (a,b,c,c) = q is a point of Q . By (4.8)
there is a p in Q such that @(p) q .« Find the motion 8y relat-
ive to the dynamics Fl’F2 containing the initial p . Then S =
Q(So) will be the motion relative to the dynamics I;, I, contain-
ing q . By (4.8) , this motion S 1lies in Q .
We will now show that In = Fn on Q . The form of In is given

in (2.2) where the A are given by (2.7) . We consult (4.4) for

U; = U and apply Fl . We again observe that Fl[el] = 260{', S0
that F [a] = 264", etc. Now A, = Fl[U]oq". After simplification

we obtain

_ ] 2t tfen, (W) -
A= 4 Gd%+qu+Gp%u+G(F+6ad9v o™t

Since Q4 maps Q onto Q , and G (see (#.1) ) is O on Q , we

have A, (and also A2) being O on Q . Therefore I = F oon Q.

Hence the motion S appropriate for Il’ I2 is appropriate for Fl’
F2 i.e. it is a motion for the zero interaction. Thus on S the

velocities of the particles are constant, as (4.9) asserts.

FOOTNOTES

1) This was first explicitely stated by Ph. Droz-Vincent, Relativis-
tic systems of Interacting particles, Physica Scripta, Vol. 2,
129-134 (1970).

k k

2) Henceforth we abbreviate in by up .
3) See R. Arens, An Analysis of Relativistic Two-Particle Interactions,

Arch. Rat. Mech. 4nal., Vol. 47, 255-271 (1972)
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We show the existence of an infinite
number of symmetric 2-particle interact-
ions. These interactions are translation
invariant, Lorentz invariant, and lead
to second order differential equations.
Our examples are analytic.

1. Introduction

‘The interactions we construct are local in the sense that. the power
series involved do not necessarily converge for all relevant values
of the initial conditioms.

They do, however, converge at those initial conditions where both
particles start from rest in some frame. These most crucial initial
conditions could not be satisfied by the earliest example of a local
interaction, the one due to Kerner [1, pp. 262-263] .

"Symmetric" means that if the initial conditions of the particles
are interchanged, then the same two world lines will still be the
ensuing motion. A global symmetric interactionwas given in [2,7.5]
as well as earlier, by Arens and Babbitt [see 1] but these were not
analytic (merely C%).

We were led to thsse interactions by reducing the arbitrariness of
the interactions by improving an extra condition: dilation invariance,
That is to say, if the pair of world lines Wl,W2 belongs to the
interaction and T is an expansion of space time centered on the
origin (0,0,0,0) , then TW,,TW, also belongs to the interaction.

There was a danger that this extra requirement would force the
interaction to reduce to the zero interaction, but the reverse is
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true. There are such interactions, locally, at least.

The resulting differential equations are simpler than for the general
Poincaré-invariant case. Therefore the chance of someone finding an
explicit solution is enhanced.

2. The formalism of dilation-invariant interactions

Any binary interaction can be described by giving the Minkowski
accelerations Mi(i = 1,2) for the two world lines involved, and
these accelerations have the form

M= §il2 - wz)ud+ ?;[ -l ;] (2.1)

where u,,u, are the space time velocities (with u; +u; =1, the
dot product with signs -,-,-,+ Dbeing intended throughout) while z5
is the position of the i-th particle relative to the other one (the
i’~th) . Here f,,...,8, are four scalar functions of the positions
and the (unit) velocities of the two particles [2;2.4] .
An interaction is invariant under a space-time transformation T
if whenever (wl,wg) is a pair of world lines associated by the inter-
action, then so are TWl and TW2 II. The zero interaction is inva-
riant under each dilation (defined by some ? >0 and sending each
x into px ). Kepler’s third law shows that Newton’s inverse square
law is not dilation invariant,
However, in a relativistic context, dilation invariance does not
seem to be an unnatural requirement. It can be easily characterized.

Proposition 2.2. The interaction described by 2.1 is dilation in-

variant precisely if for each positive number [N
-Q,, (?X“ P Xz, Ugy “p) = f-l'ze; (xhxz.ua;‘u")

qc(?«l lPx‘lu U, ’uz) = P—‘ 3" (x“'xz'u‘“u") 4 4:='{'Z

‘For the translation-and-Lorentz (= Poincaré) invariant interaction,
the functions fl;...,gg depend only on the four Minkowski invariants
of the three vectors up,up,z = X - Xp [2, (2.2)] . If we add teo
this dilation invariance, then they depend in an essential way only on
three. We recall the notation of [2 s Sec. 5] : d=u- oz,

p=v-z, YV=u-v, T=2°+2, £=1f,g=g,h=1f,k=g¢g;.

Proposition 2.3. Let the interaction 2,1 be dilation and Poincaré
invariant. Then there are functions F,G,H,K such that




%, The fundamental relation

Let L1 be the differential operator defined for functions of
ul,u2,xl,x2/ such that

Lixy=u,, Liau)=W, ., Lixa=0, Liu)=0

Similarly let L2 be defined by

L(x)=0 ,' Liw)=0 , Lix)=d., Llud =M,

The fundamental relation which any interaction must satisfy is [2,4.5]
LJM;)= 0 ) Lz(Mq)'—'O (3.1)

The intent of an equation like this is that M2 should be represented
through its Cartesian components and that L1 of each component should
vanish. This requires of f,g,h,k (or of F,G,H,K) that they should
satisfy some differential equations which we calculate below.

Such differential equations were presented in [2,4.8] . They were
in terms of the variables Ad,y,;' and so apply only in such regions
(or for such initial conditions) where these variables form different-
iable coordinates. Now ¥ is not an acceptable coordinate at the
very important initial condition

g = (0,0.0,4) i, =(0,0,0,4), 2=(b0.0.0) (3.2)

At (3.2) , the variable ¥ assumes the value 1 and since Y21
in general, it cannot be a coordinate there. Since we are interested
in local solutions to the fundamental relation valid at, and near,
(3.2) we must choose a variable T which can replace y and serve as
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a coordinate.
Such a variable T is the determinant of Up 5 Uy, 2 (please note

that for valid reasons, our space~time is 3= dlmen51onal [2 2. 1] ).

We augment the 1list L(z)_1+f(g-;{)+g(p. Av ), Li(p)=
=9,L(V)=f(}k ;\v)+g(1-v) L(;)—2Rg1ven1n
[2,4.6] vy

Proposition 3.3. Ll(T) =~ (Af +972)T.

Proof. Ll(det (ul,ug,z)) = det (Ml,ug,z) + det (ul,O,z) +
det (ul,ug,ul) . From this and (2.1) we obtain (3.2).

We can now write down the differential operator L1 , using the
coordinates ),P,Z.t in terms of which any Poincaré invariant funct-
ion ¢ may be expressed. We have the components Llét), ete., and so

Lo= (e (5000 + (e-ag ] 20 4 v 20
(3.4)

-T (af"”ﬁ)% + 2:\%

" Here ¥ is not a coordinate. It is, of course, expressible in

terms of A,u, B, T .
The exact relation is

z z_ 2%

Since ¥ is negative, one can easily deduce that V2 1 , and that

Vv =1 only if d=p and T = O . Thus the differential operators
Ll’ L2 can not be used in the form written in [2] for considerat-
ions at and near the conditions (3.2).

The derivation of (3.5) may be left to the reader.

The expression on the right of (3.5) is analytic in a neighborhood
of any point of its domain, because, as is natural, we require a space-
like separation of z,,z, which makes <0,

The fundamental equations . are (ef. 2,5.3 )

L) =44 , Lilk) = b+ (v4+20)k

‘ (3.6
L) =gh o Lug=f+0k-ph)g )
where L, is given by (3.4). L, is given by
v= - Db - k1L -0 20
~Thphevk) 3 - s (3.7
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One obtains (3.%) from (3.6) by making those changes required for
interchanging the particles, namely

(QJHIC'T) - ("f"l"2 8, Z)

4, The fundamental relations if dilation-invariance is also imposed

We introduce coordinates x = 4( - ¢ )_1’/2 , Y = ta.(--;)"‘/2 ,
=T (-;)_1/2 . This makes

2 2 21V :
V= - xu+ [UsxHUr ) + @ ] (4.1)
Therefore, the functions F,G,H,K of (2.3) may be presumed to be
functions of x,y,& . We compute the x-component Ll(x) of Ly,

etc., and assemble the differentiable operator L, in terms of the
new variables. The computations produce

Ly= €2 " (A-2x22) (5.2)
where A, is the differentialtoperator
A+ - (A+x’)F+(«a—'xv) &'}%‘ +(v+o<«3) %— + (x- x‘F»v&)c-%__ (4.3)
The companion operator L, is
L = C2™%(A, + 2y ;22) (4.38)

where

Ay = = Dhsue- (439 H-(x-ynK] g; -

- (VM';)% - (.3 -4 H va) 0'% (4.4)

Theorem 4,5. The four functions of (2.3) define an interaction if

and only if they satisfy the fundamental equations

A1(H)= -2xH + FK
AlK)= -xK + H+ (v6 +xF)K
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4.4, PROPOSITION

U=z u+26a'z + au+ 2&#&4(6&8 LN 2) ZG:()
W) o)
where G is given by (4.1.1)while d'ﬁetc.) means aqéﬁupresuming that
o4 is expressed in terms of the five functions named in (4.3).
The proof is immediate in view of Fy[«] = o«l2e , ete.
There is a similar expression for V = U2 :

(uv) = - (ua)

o ™) w-t)a«, (4.5)

V= v-2622+ 2w+ 26 By +(zes'
obtained from applying Fl to
V=u-2z2+ ~4'J—+('_+—---"“"’) &')
Y-2+ g $ o A

Here the bars are used only to indicate corresponding terms. Certain
signs are changed because 2 = x - y changes sign when x and y
are interchanged . &/ in (4.5) indicates 9O /9 G21 .

In a symmetric3 interaction, one would have

o ((uw), (uvy, W), T% &,,) = & (o), (), ww), T2 &,,)

(also for P and § )
For a symmetric interaction one has

“= o ((uu), (uw), luw), 0,0) = o (4.6)

when v = u (and the same for @,S.).

We want to prove that when u = v , the forces of interaction va-
nish, although the forces need not be O when u £ v . To form our
hypothesis more precisely let us say that a Poincaré-invariant 2-par-
ticle interaction is of gubstitution type exactly when there is a 1:1
map ¢ (as in (2.6) ) for which

I, =¢, (%) . «<=42

We establish a detail which is needed later.

4,7, PROPOSITION. Consider a symmetric interaction of substitution
type. Then the value (4.6) assumed by of and o for u = v _cannot be

1
-5 .
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Az(F) = Z!aF +HG&
N, (G) = yG+F + (vK—%H)G

The proof consists in writing the relations (3.6) using the formulas
(#.3), (4.4) and those of (2.3). Certain powers of -Z  can then be
factored out, giving the equations above. The functions F,...,K
depend only on x,y, & .

We showed in [2] that any solution in which G and K are identi-
cally O must have F and EH equal O also, thus representing the
zero-integration.

Solutions in which F and H are 0 are called purely kinetic

[2]. We write down the equations for such interactions:

[4+x% 4+ ("~ -xv) &) - %‘ + (v-m«a) Q; b (x-v&) o 2K —

T (4.6)
= -xK+vGK
a
an _(y+x\pg.% _[44,47-_ (x- 5V)K]%% - (44+VK) O'.f?sf.:_' = |
= A}G—-r v K& ’ (#.7)

The other two equations reduce to 0 = 0 .

We shall see that there are power series solutions of these equat-
ions, and therefore, of course, of all the preceding, more general,
equations.

As an appendix to this section, we record for later reference the
form of the operators A 1 and A in terms of x,y,V¥

= [4ex2- Usx))F 4+ Ly -'xv)é'r] g + (v+-xs}) 2, h.8)
+L (A}-VX) F+ U-v’-)e—] ’)
~(vane) 2 ey
/\z = (vu;) - [/l-H”‘ U+;")H -(x ?v)K] + .5

+ Ly + (4v)K] 4 9

5. Symmetric interaction

For a generic function J of the four (vector) variables Uy ,Us,

Zz1,Z, appearing in (2.1), define

J”?ul,u2,z1,z2) = T(upyug 92552q)



16

If J depends only on the variables x,y, 0,Z% mentioned in the last
section, then '

Tz, 68) = Tly,-x,~0, 2)
An interaction of two particles is gymmetric [2,7] if ® = r*

and K = G* . Por a symmetric interaction there are only two functions
needed, say F and G . They have to satisfy two equations of (4.5):

AF) = 20 F + %6 (5.1)

Me)= 4G+ F + (VG*-?F"')G- (5.2)
A 'being the following modification of AZE:

A= - [‘lHa,‘- (/l-l-‘f) Fro (x-%y)&i-] %— _
- (v-n«;)% - (Aa__,?-pi-_,_vai-) 0.2_}_ (5.3)

If we are content with a purely kinetic interaction, we may take
F = 0 and are left with only one equation

Irgr— (x-yNE+] 2& CLs
[*‘} (x-4 ] et (\>+xu1,)'a'x +

(5.4)
& _ _ _ *
+&w&)¢5:_. 46 -vG&

Here v 1is as always given by.(4.1). It is evidently an analytic
function of x,y, ¢ in a neighborhood of the point (0,0,0) corres-
ponding to the initial conditions (3.2).

Theorem 5.5, There is a local binary interaction valid in a neigh-
borhood of the initial conditions (3.2) which is

analytic , (5.5.1)
symmetric , (5.5.2)
Poincard and dilation invariant , (5.5.3)
purely kinetic , (5.5.4)
non-zero . : (5.5.5)

The only blemish in this theorem is that the acceleration function
it delivers is perhaps not defined for all initial velocities and rela-
tive positions. This is what we mean by local.
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Our solution will depend on a variant of the Cauchy-Kowalewski
existence theorem [3 , vol.5) . It may be that for some initial Cauchy
data the solution will indeed converge everywhere but we can promise
only a local solution.

If it were not for those asterisks in (5.4) , one could quote the
Cauchy-Kowalewski theorem and assert that, for any analytic boundary
value function

T (x, o)

one can find an analytic G(x,y,0) defined at and near (0,0,0) , satis-
fying (5.4) . This would be because the coefficient of 7G/2y in
(5.4) is 1 and therefore not O , at the point (0,0,0).

However, in our differential equation there is present the "unknown"
function G and its "conjugate" G¥ , We will show how to treat this
problem. We first change to new variables s,t, o where s = x+y ,

t =x -y . This changes (5.4) to

[4+~3‘—6¢—-3v)6*+v+ x«}] 2_5@'- =

=- [4+4}’-— (1—«3\')6-*-\1— 'x«a] ’_;_:: -

(5.6)
- ) o G *
('3+vG )0"7; _%G—VGG

Here x has to be thought of as %(s +1t) and y as %(s - %) . The
nature of the conjugation has changed, in that G*(S,t,V') = G(-s,t,9),
Dividing by the coefficient of 2G/2 s , we obtain a differential
equation of the following kind:

%:
s

Where the dots stand for other variables tl,.;.,tn , and the deriva-

d(s,6.6%...) (5.7)

tives of G and G* with respect to tl,...,tn . Here ® is an analy-
tic function of all its arguments, and G*(s,...) = G(-s,...) , the

variables represented by dots being unaffected.

Proposition 5.8. Let a function ['(t;,...,t ) be a function depen-
ding analytically on its arguments. Then there is a solution of (5.7)
with  G(0,t;,...) = [(ty,....) .

Instead of proving this in the conventional way, I will just do an

example illustrating how Problem (5.7) is reduced to a Cauchy problem
of the usual sort. Let the equation to be solved be
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G (s.k) = (5+%) -G (s.d) + Gs ) G EsAD (5.9)

Here G, indicates dGrog . Let G(s,t) = A(s,t) + B(s,t) where A

is an even, and B an odd, function of s , respectively. Then

A+B, = (s41) (A+B) + (A+B)(A-B)

We replace s by -s and obtain

- A+ B, = Es+1) (A-B) + (A-B)(A+B)

because the derivative A, is odd, and B1 is even. These two equat-
ions are equivalent to the system

Ar= sA+1B (5.9.1)

B,= tA +sB+p-B? (5.9.2)

with the initial conditions

Alb.t) = T{t) Bdt)= 0 (5.9.3)

'

This can be solved by the usual Cauchy~Kowalewski theorem. Let the
solution yield A(s,t), B(s,t) . The question arises: is A an even,
and B an odd, function of s ? To see this, let % (x,t) = A(-s,t) ,

M (s,t) = -B(-s,t) . It is easily verified that the pair 3y satisfies
(5.9.1), (5.9.2), (5.9.3). Thus %=A and =B . Letting G=A+B
solves (5.9).

6. Pseudo-symmetric interactions

In such an interaction, f =h and g =k , by definition. The
concept was introduced in [2] because the differential equations
then take on a more classical form. Indeed, we proved in [2] that
each such an interaction could be obtained by imposing a relation on
three expressions, namely [2, 6.4.5, 6.4.6, 6.4.77 . )

Theorem 6.1. Any Poincaré and dilation invariant, analytic pseudo~
symmetric interaction which is valid at the initial conditions (3.2)

is the gzero~-interaction.

Proof. It is known [2,6.43 that such an interaction involves an
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analytic relation between three integrals [2, 6.4.5, 6.4.6, 6.4.7) .
In terms of § and the new variables x,y,® , these integrals may be

taken as
(1) 6%+ 2(«-c4)(v+nc1-&vk+ 2 (6.1.1)
Go (6.1.2)
G (-Zx;}v +xl+«ai+<rz) z-! (6.1.3)

where G = g( -1:)1/2 , the g being, as always, the g; of (c.1).

Let these integrals be denoted by ,%.,w respectively. If the
interaction is dilation invariant, the relation between W@,y cannot
involve w since the & is not dilation invariant. Let the relation
be

Feod)=0 (e.2)

Since\t( and 4 are O at (3.2), F has a vanishing constant
term.

Proof. First let us assume that
FEw = 2Aczuw)+ wBew (6.3)

where

Blow) 0 and Azo)+ 0 (6.4)
Now let @ = 0 . Then G is still an analytic function of x and
y . Note that ¢ =0 when &= O ., Hence, for 6= 0 we obtain

a non-trivial relation. It has the form
" {0+ 0,9+ 0, 9%+..) =0, a,%0 (6.5)

No matter how G depends on x and y we can make ¢ (see (6.11))
as small as we like by making =x <close to y . Making ¢ small fbrces
it to be 0 , by (6.5). But if ¢ = O then G certainly cannot be
analytic, by the formula for solving §f = O , even for 6= 0 .
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So F cannot look like (6.3) with (6.4) holding. This is to say,
either

F==adlaw) |, m 3 4
or
F = w*D (zw) s mx4 (6.6)
where
Clow)+o D(@0) #0

Now ¢ cannot be O as we have already noted, so C(z,w) = 0 is
asgood as F = O . This puts us back into (6.3)-(6.4). This leaves
case (6.6), so 4 = 0 (zero interaction) or we again fall into (6.3)~
(6.4).
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ABSTRACT

In the first section of this paper we define the concept of an At-
tractor of a hereditary first order differential equation as an ordi-
nary differential equation whose solutions are solutions of the heredi-
tary one and can be interpreted as the asymptotes of its generic solut-
ions. We define also the concept of Predictive Differential Equations
associated with a class of hereditary ones depending on a coupling
constant G as a first order differential equation which is such that
all its solutions are solutions of the corresponding hereditary one
and which is analytic in the neighbourhood of G = O . We report some
numerical work proving that for some hereditary equations the corres-
ponding predictive ones are Attractors.

In the second section we consider the retarded electromagnetic equat-
ions of two point charges and we prbve numerically in a particular case
that the associate Predictive Poincaré Invariant System defined in pre-
vious papers is an Attractor in an obviously generalized sense. Rough-
1y speaking this méans that the retarded electromagnetic equations of
motion have a built-in mechanism which causes a spontaneous predictivi-
sation of the '‘causal interaction.
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INTRODUCTION

This paper is divided in two sections. The first one has been inclu-
ded mainly to illustrate the concepts to be used in the second section,
but the material that it contains could eventually be interesting for
other purposes.

We consider a hereditary differential equation of the first order
and we remember some fundamentals of the theory of such equations as
the integration method of steps, and the regularization in ﬁhe future
of the solutions of the pure retarded equations.

Calling a Reduction of order J an ordinary differential equation
which is such that its solutions are also solutions of the hereditary
one we define an Attractor as a Reduction of order J which is such
that its solutions can be interpreted in an appropriate sense, as asymp-
totes of the generic solutions of the hereditary equation.

We consider a class of first order hereditary equations depending
on a coupling constant G and we define the associate Predictive
Differential Equation as a Reduction of order 1 which is analytic in

G in the neighbourhood of G = O . A perturbation scheme is propoesed
to. construct it. ‘

Finally, for some hereditary equations, we prove by a numerical
integration following the method of steps that their associate Predic-
tive Differential Equations are Attractors. This result means that
there is a collapse of the infinite dimensional configuration space to
a finite dimensional one. We refer to this collapse as the spontaneous
predictivisation of the hereditary equation. The word Predictive is
justified in the sense that sometime after the beginning of the inte-
gration the Predictive Differential Equation and the value of the
function at a given time permit to Predict to a good approximation the
future of the solution.

Obviously the concepts and methods of this first section can be easi-
1y generalized to equations of higher order.

In the second section we consider the hereditary (causal) equation
of motion of two point charges. When the radiation reaction forces
are ignored the correspohding dynamical system is of second order but
strictly speaking it is of the neutral type and therefore no regulari-
sation in the future of the solutions obtained by the method of steps
is to be expected. Actually we prove that at some level of approximat-
ion, and in two different meanings, there is such a regularization.

The consideration of the radiation reaction forces introduces some
complication which we eliminate using the Order Reduction method. This
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method reduces the third order hereditary dynamical system to a second
order one which at the order of approximation that we consider is pure
retarded (non neutral).

It is known how to associate to such a dynamical system a Predicitive
Poincaré Invariant System (P.I.S.). We remember the usual procedure but
we present also a constructive method which is closer to the concept
of P,D.E, which we have presented in the first section and which is
also better adapted to some numerical calculations.

- We have integrated numerically following the method of steps, the
equations of motion of two equal mass charges having equal absolute
values for a fairly large class of initial conditions leading to planar
motions and we have seen that the P.I.S. is an Attractor in the sense
that the relative difference between the retarded acceleration and
the predictive one tends to zero beyond a certain time as long as the
distance between the two charges remains larger than a few natural
units. v

It was known that the P.I1.S.’s associated with causal interactions
permitted to deal with the finite dimensional space of solutions having
the maximum smoothness. The numerical result reported in this section
(we have proved a similar result for the gravitational interaction)
seems to indicate that the theory of P.I.S.”s associated with causal
interactions can be considered as an approximation which some time
after the particles have been let free to interact becomes better and
better as time elapses. To use an image drawn from thermodynamics we
could say that the solutions of P.I.8.°s are the states of maximum
entropy of the corresponding hereditary system and that retardation
is the mechanism which pushes the entropy to increase steadily.

This paper is meant to discuss some ideas at a qualitative level
and not at a rigorous one.
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SECTION I : HEREDITARY DIFFERENTIAL EQUATTONS
1. Generalities [1]1 (2] [3]

Let us consider the following hereditary first order differential
equation with one unknown x and one independent variable + which
we call time:

7-(-&.= FH‘,.’X{:; x-é.-r".(f"’) (1.1)

where x, and it mean the function x (t) and its derivative at

the time t and where Xi_¢ and Xi_y MDean the same quantities at the
time t-r , ¥ Dbeing-a positive constant, and F a conveniently
smooth function of its arguments. Equation (1.1) is of course not the
most general equation we can think of, but this type of equations will
be sufficient to illustrate some points.

The initial wvalue problem corresponding to equation (1.1) can be

formulated as follows: how much do we have to know of the function

x(t) for values of t 1less or equal to to such that thig informat-
ion together with eq. (1.1) determine one and only one solution of class
¢° for t greater or equal to to ? If the function F did not de-
pend on Xi_ o hoT it-r the answer of course is that we have to know
?to only. Instead if the function F depends on X g or/and

Xi_, the answer is that we have to know the function Xy in the in-
terval [to -7, ta]. The configuration space associated with eq.
(1.1) is therefore the infinite dimensional space of all sufficient-

ly smooth function x(t) defined in the preceding interval.

The general procedure to solve eq. (1.1) is the following: First

of all, as we have just mentioned, we have to choose an arbitrary
function in the interval [to -r ., to]. Let us call this functidn

¢ (t) . This choice gives then a meaning to the function F in the
interval [to, to +r] on which it becomes a function of t and Xy e
Therefore the equation (1.1) can be integrated in this latter interval
as an ordinary differential equation. The general solution x(t;C)
will depend on an arbitrary constant C which will be determined by
the condition:

Le.(to) = X (“‘.o,d) (1.2)

the corresponding solution gives then a meaning to the function F

in the interval [}O +C , 5,527 ] and the procedure can be itera-

ted. This method to integrate eq- (1.1) is called the method of steps.
Clearly enough the solutions - x(t) thus obtained will have a dis-

continuous derivative x(t) at the time o because there is no



25

relationship, but accidental, between the past derivative at to which
depends on the initial arbitrary function Q(t) only and the future
derivative which depends on. ¢ (t) and the function F , If eq. (1.1)
is of the neutral type, i.e., if F depends on it-r‘ the derivative
will be discontinuous also at the time to + ntv for all integers n .
On the contrary if eq. (1.1) is of the pure retarded type, i.e., if

the function F does not depend on it—r

then the situation is as follows: there will be in general a discon-
tinuity of =x(%) at the time to but this derivative will be conti-
nuous from there onwards. More generally: the i-th derivative -th)
will be discontinuous at the times t , t +r ,...., t_ + G-Dr
and continuous from this latter time onwards. This assertion follows
very simply from eq. (1.3) and from the equations that we obtain from
it by calculating the successive derivatives with respect to t

©)

{i-9 i . ti-4)
X£= F ({,'X*_,Xé_r,xé_‘.,...,x

e (1.4)

this regularization in the future of the solutions obtained by the
method of steps is an important property of the pure retarded equations.
We shall see below that, at least in some cases, this property is the
first step towards a deeper regularization. )

Important examples of pure retarded differential equations are the
linear ones:

Xg = G Xy +H X, (1.5)

G and H being constants. These equations have analytic elementary
solutions in the interval J-o , + @[ of the form:

X,=e (1.6)

o  being a solution of the characteristic equation, i.e., the equat-
ion which one obtains substituting (1.6) into (1.5) :

=G+ He™ (1.7
The main results concerning these equations are the following (we
invite the reader to consult Bellman and Cooke’s book for a complete
and rigorous presentation of the subject): i) the characteristic
equation has an infinite number of complex roots; ii) among the complex
roots there exists always one which has the largest real part (this
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would be false if the equation had been of the neutral type); iii) the
general solution of eq. (1.5) obtained by the method of steps starting
from an arbitrary initial function @ (t) defined in the interval

[- r, o] can be représented as a linear combination of an infinite
number of elementary solutions with coefficients which in general will
be polynomials having a degree equal to the order of multiplicity of
the corresponding characteristic root.

2. The Concept of Attractor

Let us consider again a hereditary equation of the type (1.1) and
let us consider an ordinary differential equation of order J :

@) ’ (3-4)
X = R % %, ., %y ) (2.1)

We shall say that eq. (2.1) is a Reduction of order J of the here-
ditary eq. (1.1) if all the solutions of eq. (2.1) are solutions of
equation (1.1). In some sense hereditary equations can be considered
as ordinary equations of infinite order and therefore we might expect
them to have reductions of any order.

Definition. We shall say that a Reduction of a hereditary equation
is an Attractor if its solutions can be imagined, in an "appropriate
sense", as the asymptotes of the solutions of the hereditary equation
for generic initial conditions.

This definition is meant to give some general but only intuitive
meaning to the concept of Attractor. But actually the "appropriate
sense" we have referred to has to be made precise for each particular
case.

Let us consider the following linear equation:

xy = Hoxg_, (2.2)
The characteristic equation is:

o= He™ (2.3)

which has a simple real rcot if H > - Ve . Let us assume that this is
the case. Then:

X, = Aedt . (2.4)

where A is an arbitrary constant, is a2 solution of eq. (2.2) in the
interval J]-w, +@ [ . On the other hand expression (2.4) is the ge-
neral solution of the following first order differential equation:
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Therefore, when o defined by the characteristic equation (2.3) exists,
eq. (2.5) is a reduction of order 1 of eq. (2.2).

We have integrated numerically by the method of steps eq. (2.2),
considering a variety of initial conditions @ (t) 1in the interval
]—1 s O [ including linear functions, sinuisoidal, exponential or
even aleatory data. The behaviour which has systematically been obser-
ved, for values of H greater than ~Ye and not too large is that
beyond a certain time the quantity @t = )EJC/XJC defined by the nu-
merical solution tends very rapiddly, as t dincreases, to a constant
which is, up to the precision of the numerical integration, the real
root & of the characteristic equation (2.%3). It is this result which
we interpret as saying that eq. (2.5) is an Attractor of eq. (2.2).

Let us consider the following second example:

Xy= G {xg-%xy) (2.6)
The characteristic equation is:
&= G(4-€) | 2.7

This equation admits for any value of G +the solution £ = 0 and if
G is positive it admits a second real root o which is negative if
G<1l and it is pogitive if G > 1 . Therefore whatever the value

of G :

Xt = A . A: const. (2.8)

is a solution of eq. (2.6) and if G0 then:
Xy = A+ R ext A,B : const. (2.9)
is also a real soiution of eq. (2.6). From eq. (2.8) it follows that:
X, = (2.10)

is a Reduction of order 1 of eq. (2.6) for all values of G and eli-
minating the constants A and B from eq. (2.9) and its first and
gsecond derivatives it follows that for G >0 :

" ’
K= oLX (2.11)

is a Reduction of order 2 of eq. (2.6).
As for eq. (2.2) it would be of course very easy to construct Re-
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ductions of any order of eq. (2.6). The two Reductions (2.10) and (2.11)
have the particular supplementary interest that they are Attractors.
In fact a numerical integration under the same general conditions as in
the preceeding example has shown that for G« 1 the quantity it
calculated from the numerical solution, beyond a certain time tends
to zero as t increases. We interpret this numerical result as mean-
ing that eq. (2.10) is an Attractor of eq. (2.6). On the other hand
if G>0 it can be seen that the quantity Pt-: ':Et/:'ct beyond a cer-
tain time tends as + increases towards a constant &« which is, up
to the precision of the numerical integration equal to the non-zero
real solution of the characteristic equation (2.7). We say then that
eq. (2.11) is an Attractor of eq. (2.6) when G> O . Notice that in
the interval G e JO,1[ both egs. (2.10) and (2.11) can be consider-
ed simultaneously as Attractors of eq. (2.6). This can be so because
for < O both function (2.8) and (2.9) have the same asymptotic
behaviour,

Of course for these two linear examples the concept of Attractor
could be made precise, as it could be proved exactly that eqs. (2.5)
and egs. (2.10) and (2.11) are respectively Attractors of egs. (2.2)
and (2.6). The properties which we have mentioned at the end of the
preceding paragraph give the hint for the definition and the proofs.
But here we have preferred to remain at the level of intuition and
conviction which can be attained by numerical calculations because
this is the level at which we can raise ourselves in the discussion
of highly more complicated problems. It is our feeling that the time
is not ripe for a rigorous analysis. '

The importance for a hereditary equation to have a known Attractor
is obvious. Not only does this means that we can construct some of
its smoothest solutions it can have in the largest possible time in-
tervals; it means also that, if we are not interested in the near
future of the solutions after the end of the initial constrained mo-
tion but we are interested only on their behaviour after a while,
the Attractor can be considered as a useful substitute of the heredi-

tary equation.

%3, The Associated Predictive Differential Equation

Tet us assume that the function F of eq. (1.3) is proportional
to a coupling constant G :

Xp= G W (&, Xy xy.p) (3.1)

For this class of equations, which could be extended of course; we
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shall introduce the concept of Associated Predictive Différential
Equation (P.D.E.) according to the following definition,

Definition. Let us consider an ordinary first order differential
equation depending on the coupling constant G

= %t %, G) (3.2)

We shall say that eq. (3.2) is a P.D.E. associated with the hereditary
equation (3.1) if i) eq. (3.2) is a Reduction of eq. (3.1) and ii)
for small values of G the function % can be developped in power
series of G of the following form:

Tlt.x,:6)= G.%)(-g.x*) + G"-i) %)+ (3.3)

i.e., without a zero power term.

According to this definition eq. (2.5) is a P.D.E. associated with
eq. (2.2) and eq. (2.10) is a P.D.E. associated with eq. (2.6).

For equations more complicated than egs. (2.2) or (2.6) it might
be difficult or impossible to obtain corresponding associated P.D.E,
Therefore it is important to set forth a perturbation algorithm to cons-
truct approximate ones. To do it we shall make some supplementary as-
sumptions. To each hereditary equation satisfying them; it will corres-
pond then to one and only one formal associated P.D.E, Let us write:

k\[k]= G€m+ nglz)h“ +G° %(x) (3.4)

For each value of k each of these approximate P.D.E. can be inte~
grated backwards considering. Xy as initial condition corresponding
to time t . TLet xg%i (t;xt;G) be the function which gives the value
of the solution of (3.4) at time ¢t-r as a function of %, xy and
G . We assume that these functions can be developped also as a power

series of G in the following form:

k 3k,
X:f = Ky +G-(>"’n(e.xb)+ G‘-f‘k By (3.5)

and that
. ¢
g'\lﬁw'ﬁ = 9 1k} ir o ‘“g’ TR0 (3.6)

in which case we shall write

s

Substituting then the formal expansion:

{k‘ﬂg Pu‘.) (3.7)
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£s)
Xy = %y + GP“’+ G4 . 4G p® - (3.8)

into eq. (3.1), expanding and identifying with eq. (3.3) gives the
necessary relations to identify the coefficients '5‘"’. The first one
is:

(L1]
T lx) = W b,y 5 x4) (3.9)

This is the only trivial step of this algorithm. The next one would
consist in calculating ?(1) by integrating the first order approxi-

mate P.D.E. (3.4) . The feasibility of working this out exactly will de-
pend of course on each particular case. But ¢ as 9““ can always be
calculated at the appropriate level of approximation.

This method applied to eq. (2.6) leads trivially to eq. (2.10).
Applied to eq. (2.2) it leads to an infinite series whose sum is eq.
(2.5). Egs. (2.5) and (2.10) are therefore the P.D.E.’s associated res-
pectively with egs. (2.2) and (2.6).

v Let us consider the following hereditary equation:

RV O (3.10)
According to eq. (3.9) the first order P.D.E. associated to it is
. (2]
Xy = G&/x, (3.11)

Integrating this equation we obtain for sufficiently large positive

values of Xg t

x*t‘}r = (x2-26r)"2 (3.12)
Assuming now that:
&c <4 (3.13)
X
we obtain
o ( -ﬂ.)
, x'&-—\‘ - % K‘tz (3014)
and the second order associated P.D.E.
5(?7_—_ & (4+i".) (3.15)
Xy ¢

We expect of course this equation to be a good approximation of an
exact P.D.E,, supposed to exist, for large values of X only.

We have integrated numerically eq. (3.10) for a variety of initial
conditions and we have examined more particularly the evolution of
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the quantity: ) . 21
Xy- Ky

@*,= Xy (3.16)

We have seen that when the quantity (3.13) remains small compared to

1 that beyond a certain time the quantity ﬂ1; tends to zero. We
interpret this result as saying that in the appropriate domain of con-
figuration space the approximate equation (3.15) is an Attractor of
eq. (3.10).

We have considered three examples of first order hereditary diffe-
rential equations, namely eq. (2.2), eq. (2.6) and eq. (3.10) of the
type of eq. (3.1). In the three cases we have seen that the correspon-
ding associated P.D.E. (second order approximation for eq. (3.10) )
was an Attractor in an appropriate, self explanatory sense. We consider
this finding, which has its root in the very meaning of the perturba-
tion constructive method we have presented, as an indication that one
of the most relevant questions that we can ask in connection with a
hereditary equation is the following: Is it possible to construct the
associate P,D.E. (exactly or approximate)? If yes, is the associate
P.D,E, an Attractor? ‘
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SECTION IT : THE ELECTROMAGNETIC INTERACTION

1. Equations of motion of two charges

Let us consider two point-~like electric charges e, (a=1,2) with

masses m, and let:

L. : Xl = %3 (Ta) (W fs,..= 0.4,2.8) (1.1)

T, being the proper times, be the parametric equations of their
time~like future oriented world lines. We shall use the signature
+2 of Minkowski space-time and a system of units such that ¢ =1 .

. dxa

U Uag = -4 \ Mx = T (1.2)

and ua°:> 0 by definition of fubture oriented.

Therefore we shall have:

If no other interaction nor constraint, besides the electromagnetic
interaction, is acting upon the charges; if we assume causality; and
if we neglect radiation reaction forces (later on we shall take them
into account), then the functions (1.2) must be for T, large enough,
i.e. beyond the initial constrained motion, solutions of the following

system of hereditary second order differential equations

duf _ =~ _ g+
A (1.3)
where: . ce .
Wa = eqeal'qu Y‘Aq'{ [J-I-(LAI in_‘y)]( k“‘, Lu’ “Naa’ u_a‘)
(ZM’M‘)'QAA' /?4.' zq‘:l } (1.4)
where: 2% a , 1‘:’ = ;(4“— &4:’
‘4“" =- Ua"l;,m') ’ -/;A.' s - (1.4' uq) (1.5)

%;a; being the intersection of the world line of particle a’ w1th

the past light cone with vertex at the point x;' . ﬁaa’ and .gaa’
being the unit four-velocity and four-acceleration at the point ><;a,
and round brackets indicating scalar products.

Equation (1.3) express that each particle a obeys the Lorentz
equations of motion corresponding to the retarded field created by
particle 2a“. They are hereditary equations as are the ones we have
considered in the first section but highly more complicated: they
involve a larger number of variables; they are of second order; they
are a system; they are of neutral type (the functions W/; contain
the f;;,); and the retardation is of a functional type. Nevertheless
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as we shall see we can use similar concepts and apply similar methods
to analyse these equations.
The method of steps can be applied to construct solutions of class
ol orf equations (1.3). For this it is necessary to enlarge. the system
of equations (1.3). Let YA ag’ be fhe value of T, corresponding to
the point Qgé,. This value of T
riving the relation:

[x:(l") - x“(l l%aa')]‘ [ xﬁ.‘ (CA) - xul.((%qg')] = O (1 .6)

~

T, we obtain that this function has to satisfy

ag’ 1S @ function of T, and de-

with respect to
the following differential equation:

d taa' A A ' (1.7)
—QTC: = Aad’ rq“I .

which we consider simultaneously with egs. (1.3). Let us assume now
that we are given two pieces of time-like future oriented world lines
with parametric equations:

M Al = gal (Ta) (1.8)
in the intervals Ta. e [Ta?, T], X  being such that:
Lot = )T [ aultd) - (T3] = O (1.9)

FB give a meaning to the righirhand sides of egs. (1.3) and (1.7)
as functions of x3, u: and 123,, as long as the past light cone
with vertex at the point x;‘ intersects rg,. Therefore in the co-
rresponding ‘Zb intervals these equations can be integrated as a
system of ordinary differential equations. The initial conditions for

x® are of course Q; ('t; ); those for u; are taken to be
(dqu2ﬁk)(z1)to have Cl solutions; and the initial condition for

ags’ is necessarily 'Céj . We obtain thus two new pieces of world
lines which can be used as initial data for a new step.

The equations of motion of two charges are in fact simpler in a
particular well-known case. Let us assume that the initial world lines
F; lie both on a single time-like 2—plane,'i.e., the initial space

motion is restricted to one rectilinear space dimension. Obviously

then the entire solution (both La ) will lie on the same 2-plane.

This means in particular that ;a’ will be a linear combination of
7o
aa’ and ﬁ;a’
A Y A
gaa.' =2 laa’ + H Uagq (1.10)

The substitution of such expressions into eqs. (1.4) yields the fol-
lowing result:
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& -3

ol
2= 0y 0armit B3 (ks 1% ~Aar 2150 (1.11)

therefore for rectilinear motion the hereditary electromagnetic dyna-
mical system (1.3) is much simpler than in the general case. The sim-
plification comes in by the fact that the number of variables is re-
duced but also by the fact that the expressions (1.11) no longer de-
pend on the retarded accelerations and therefore the corresponding
dynamical system is of the pure retarded type.

‘Because of this result an analysis similar to the one we made in
the preceding section proves that in this particular case there is
a regularization in the future of the solutions obtained by the method
of steps.i? the sense that after the i-th step the solution is of
class ¢C7F

2. Regularization of the solutions in the future

In the general case where the dynamical system (1.3) is of the neu-
tral type there is of course no exact regularization. Nevertheless we
shall see in this paragraph that even in this case there exists an
approximate regularization in at least two meanings.

Let us use the notation —3-: to indicate the discontinuity of 5‘;’
at the end point on La. of one step, and let us use the notation
E%a, to indicate the discontinuity .of the acceleration at the corres-
ponding retarded point From eqs. (1.3) and (1.4) it follows that:

A

=- l(M’[l % )+ Taw (Lonr Baw) Bps
LY 2 Al ‘ )
- A.‘:" \’"'“, kM' uaa’ gaa.')' (u“gﬂﬂ')l l'aa' (2.1)
where:
A A-2
Kaa’ = €alar mg' ot Ao (2.2)

Considering the square of both members of egs. (2.1) and taking into
account that:

L A _
(‘gAal Maq') = 0 ‘Qaa' =0 . (2-5)
we obtain:
A2 "A'z 2
=11
%o = Kaa' [%M, - 44' (1“' M')] (2.%)
from which it follows the inequality:

\%:“‘ 4 QAA' \%aa'l (2.5)
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A

g:a, is the discontinuity of Z:, Jjust one step below and therefore
the preceding formula can be iterated. Using the notation ?f;ﬂ to
: i
indicate the discontinuity of EE: at the end of the i-th step
~

and similar self-explanatory notations Kanaﬁ-l we can write:
- A 4 —
Nl # Ry R 1
if n 1is even, and:
— A A —
\%ﬁn‘ £ Kana’ﬂ-l.-v-'. k44a'. \‘Sa',‘ (2.7)

if n 1is odd. The quantities K g+ are the ratio of two quantities:

e, ea.m;1 and F‘ia,-,z ;;, . The first ones are natural lengths
associated with each charge. The second ones are sort of distances
between the particles (they would be exactly the proper distance bet-
ween the two charges if these were constrained to be at relative rest).
It turns out that the ﬁaa’ are Véry small compared to 1 as long as
the distance between the particles does not become extremely small.
Therefore eq. (2.7) tells us that the quantities quanl will tend
numerically very rapidly towards zero. Since ?;; and therefore %Ed
are space-like vectors we can conclude that these discontinuities
themselves will tend to zero, even if strictly speaking they will never

a

be zero in the generic case.

For n 1large enough we can assume that the accelerations are con-
tinuous.. Assuming this and deriving eqs. (l.4) with respect to Ca
we can.use a -similar argument to discuss the evolution of the disconti-
nuities of the derivatives of the accelerations. This leads to the
conclusion that these discontinuities tend to zero also as n increa-
sesj a conclusion which can then be extended obviously to the discon~-
tinuities of the derivatives of any order. We have therefore a regu-
larization of the solutions in the future.

There is another approach which leads to the conclusion that there
is- an approximate regularization in the future of the solutions of
eas. (1.3). Let us assume that we have integrated these equations by the
method of steps and let us consider expressions (1.4) beyond the first
step. The accelerations é?* will then be a function of the coupling

aa’
, vanishing when this constant vanishes. We shall as-

constant €585
o
aa’

following type:

can be represented by a power series of e_e_, of the

sume that 2%a

A& A (4.4) Aw (2.2) Ad (nn)
-s‘.l = gaa' + gﬁa' + st + g‘_al .., (2.8)

the n-th term being proportional to egeg,. Substituting this power
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series into expressions (1.4) and keeping first order terms only we
obtain:

«l4)_ A A Ay '
Wa Caey- ma Qay (k laa' Aaqp -MA”) (2_9)

These equations are identical with eqs. (1.11) except that here the
variables are not restricted to one dimensional rectilinear motion.
The dynamical system (1.3) corresponding to the approximation (2.9) is
of the pﬁre retarded type and therefore we know that there will be &
regularization in the future of its solutions.

This conclusion can be extended to a higher approximation.of system
(1.3). In fact, let us consider the second order approximation of
expressions (1.4), i.e., let us keep the first order terms 3?"(1 D
on them. From egs. (2.9) we know that beyond the second step these

quantities can be written as

A o (44) A 4 A o

gaa' = eaeal'ma; ‘Yaa l“(l( an"‘eqana - Aia'a M‘“; \ (2.10)
where: agq Ay A ) « R

aala = oot - Kaala ' kAd'A. == (Maa' Mqu')

A A (2.11)

Y‘aa’a = "uaa'a ua.’a) ) Agala =~ (Iaa'a Ma_a_;)
"
X;;,a being the intersection of the world-line L, with the past
null cone with vertex at the point Xaa, and. A;;,a being the unit
four-velocity of particle a at the point éaa rg - Let us consider

the straight-line passing through the point Xa in the direction of

u and let x;;,a be the intersection of this straight-line with

the past null cone having its vertex at the point Xaa" Since when
€58y vanishes the two points Xaa'a and X::,a coincide we can
assume that these components differ by quantities which are of first
order, and thus we can use ngfa instead that %;é,a in egs. (2.10).
A similar argument proves also that we can use u; instead of a:a’a
These two substitutions lead to the following modification of egs.

(2.10)

.

Aa (4.8 4 A3 ol A o
gur = Lo 8y My - Apa) ( aq_' 144; A P Ma) (2.12)

and we obtain finally the following second order approximation for
expressions (1.4):
o EZ] o (4,4) 2 o) =1 A
W w Q} €1 M, My rM; ‘Aaﬁl {!aal Aau MA)

-y AL ol LA.4)
-eaea’ MAL AM' aal W (2.15)

where the notation in the left-hand-side means that all terms up to
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second order have been included.

The system of equations (1.3) using expressions (2.13) as an approx-
imation of expressions (1.4) is again of the non neutral once retarded
type. Therefore we know that at this approximation the solutions obtain-
ed by the method of steps will become smoother and smoother in the

future.

%. Radiation reaction forces

The concept of Order Reduction is partially contained already .in
Tandau’s and Lifshitz book [4] in connection with the Lorentz-Dirac
equation of a charge in an external field, but as far we know the first
paper where the concept was clearly introduced in connection with the
preceding problem but also in connection with the two-body electromag-
netic problem, was in Kerner’s paper [5]. We are going to present this
concept in a simplified context using the point of view of Sanz [6],

(7.

Let us consider the following ordinary differential equation:
3 sl
x{,=G[W(’c,xt)+ Xy ) (3.1)

where G is some coupling constant and W a sufficiently smooth
function of its arguments. Eq. (3.1) is a second order differential
equation. But equivalently we can say that eq. (3.1) represents a fa-
mily of first order equations

xy= Tt x,;6) (3.2)

T being the general solution of the partial differential equation:

= R | 9T
;—G‘(W+ﬁ"+'$?’;) (3.3)

Let us assume that a physical quantity x has to evolve in accordance
with eq. (3.1). If we are sure that no other condition restricts the
variable x then our Jjob would be, say, to find the solutions of eq.
(3.1) directly, or to find first the solutions of eq. (3.3) and to
find then the solutions of egs. (3.2). On the contrary if we have
other physical constraints on the system then eq. (3.3) will have to
be considered as a condition among others to determinate the eq. (3.2)
which will describe our physical system. Let us assume for example
that it is a measurable quantity which by its very meaning or be-
cause of other principles of the theory has to vanish with G or,
say, has to be a very smooth function of G . If we express this
condition by saying that the function &€ can be represented by a power
series of G :
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5=6.3%,6*z@, ,, (3.4)

then substituting this power series into eq. (3.3) gives all the coef-
ficients without any ambiguity. The first ones being for instance:

;(4) = W ;(=)= e W/Bf

o _ y. W | W
¥ W?-_—x—-l-nt

Of course for some simple cases an exact .construction.is possible.

(3.5)

Let us consider, for instance, the differential equation:
X = G- (2t + %) | (3.6)

The complete family of first order differential equations equivalent
to the second order one is:

X, = 26 (t+@) sc.e'le (3.7)

where C 1is an arbitrary constant, Among these equations the only
one having the property of having a second member analytic in G in
the neighbourhood of G = 0 1is

Xy = 26 (t+G) - (3.8)

The process which consists in substituting eq. (3.1) by eq. (3.2)
with the right-hand~side being a solution of eq. (3.3) and being ana-
lytic in G in the neighbourhood of G = 0O is called the Order Re-
duction of the equation: of course this concept can be used in more.
general cases including the hereditary equations (which as we mention~
ed in the first section, can be formally considered as ordinary equat-
ions of infinite order) and, as we shall see in a moment, the dynami-
cal system of two electric charges when the radiation reaction forces
are taken into account.

We know that when the back reaction of the radiation on two electric
charges cannot be neglected the dynamical system (1.%3) has to be re-

placed by:
o ST
I & 2 « o d
:‘i‘l:: = Wa + -:—'Ma 8:(86.*'%’“4@) g‘% (3.9)
with W given by expressions (1.4). This system of equations is '

a
of third order but egs. (3.9) are by no means the only equations which

govern the evolution of two charges. We believe that it would be rash
to forget at this level of the very foundations on which relativistic

dynamics is based. If one of the charges, say ey o is non zero but
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the other one e, is zero then the two particles are uncoupled and
they should, according to the Principle of Inertia move freely. This
is not necessarily the case for particle a according to egs. (3.9)
and therefore the Principle of Inertia has to be enforced by a supple=-
mentary condition. The best way to do it is to say that the real dyna-
mical system which governs the evolution of two charges is not the
system (3.9) but its Order Reduced one. This is the point of view we
take up here. It also takes into account this fundamental idea that
second derivatives are related to forces, i.e., quantities which we
expect to have measures depending smoothly on the intensity of the
interaction.

Actually we shall not reduce the exact system (3.9) but

o fel
A S T BT uq?)‘_l_‘ﬂ' = W (3.10)
«[2]

with W being the second approximation (2.13) of W;L which we
have calculated in the preceding paragraph. Moreover we shall push
the perturbative construction of the reduced system only ub to the
maximum order which is consistent with the approximation Wgzl . That
is to say we shall calculate the terms which are at most proportional
to the produét of four charges. We could proceed as indicated at the
beginning of this paragraph but we can also argue directly as follows.
By its very structure the lowest order term of the right-hand-side of
eqs. (3.10) is a term proportiomnal to e,8,-8nd therefore the lowest
order term of the second term of the right-hand-side is proportional

to eg éa" Therefore we can write directly that

et (81 afy] U\
: = Wd ,& Ly eA (8 + g “‘P‘)(clta wﬁg ) (3.11)
where W;*(l’l) is given by eqs. (2.9). The derivative with respect

to ta is a total derivative, i.e., the variables which refer to
particle a“ are considered as functions of ’Ca also through their
dependence on faa" Using eqs. (1.7) a straightforward calculation

gives: W“[ﬂ q\'ﬂ e

A
A
e = — 4 Mg ,Y‘ ' (kaa"' “.\ -/‘am) ax( h

= mit el o i? (kg M- 2 (3.12)

In our opinion the system of differential equations:

AUA - wdfﬁ (3.13)
dth
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is the dynamical system which has to be used to describe the electro-
magnetic interaction of two-~point-like charges at the second order
approximation. It includes the radiation reaction forces consistently
at the same order. It is of the non neutral, onée.retarded, type and
therefore we know that at this approximation its.solubions obtained

by the method of steps will become smoother amd smoothef in the future.

4, Associated Predictive Poincaré Invariant System

The concept of a Predictive Poincaré Invariant System (P.I.S.) as-
sociated with a causal interaction, electromagnetic.or other, has been
available for some time. We refer the reader to [81, and the referen-
ces therein, and to [9] and [10] for the case of the gravitational in-
teraction. Nevertheless to make this paper self-contained we .shall
present briefly this concept again for the case of the .electromagnetic
interaction at the approximation that we have considered in the prece-
ding paragraph.

Let us consider a two body newtonian-like dynamical system:

W L efe=al (1o ) (t=%-) @D
(a,b,c= 1,2 ; i,J,k,.. = 1,2,3) and let
X = @b (xd, 0% 0 (4.2)
with
O (%, < 0) =%y s (o3 K 0) = U, (5.3)

be its general solution. Let us consider a galilean frame of reference
of Minkowski space-time M4 and let us consider the family of pairs

of world lines depending on the 12 parameters (X;O , v%o )]
. . . <
XA‘,: t : x¢b= V4‘ (be’ A é) (%.4)

By definition the system of differential equations (4,1) is a P.I.S.
if the family (4.4) is invariant under the usual realization of the
Poincard group acting on M4 . It is known that a necessary [11], tuﬂ
and sufficient [13] condition for system (4.1) to be a P.I.S. is that
the functions a; satisfy the following system of non~linear partial

differential equations (Currie-Hill equations):

2ad . et g
2t 2x?




Xs (9(" M“ + U:-qai ) =Stwqa:

Qx‘ VS
‘ y ‘ L
38e | sy + a5 (Kai- Xyi) - €035 %ﬁl—zva%v"a( &
xb) K2+ “aa"‘"\xﬂ-’ \v’"aJ')u-:" b,'b b by
where gijk igs the Levi-Civita tensor, €b = 1 and where we have

applied Einstein’s sommation convention for both types of indices.
Let us consider the following-autonomous system of ordinary dif-
ferential equations on M4 .

AXA ol dUa - P
3T = a ) T = 5 (xb ut (4.6)

We know (141 that a sufficient condition for this system to be locally
equivalent to a P.I.S5. is that the functions 327 satisfy the Droz-
Vincent equations [15]

of
e, 2% r 2% ‘ (&.7)
Ma' QX“'? + —Sﬂ-’ f}u“lp = O
the constraints: ‘
gL u, =0 (4.8)
and the equations expressing that they are vector functions of vector
arguments:
€y Q>%4 = 0O
2K
‘ o
R52 23 2% _2%,, = Zucby-%
SxE T T Ang o TAuE M T e T S R o

The correspondence between the functions a; and E{ is as fol-
lows. If the latter are known we obtain the a; by the formulae:

ag (3, %) = U-53 (3 - 0 327) (4.10)

where the notation f!‘ means that the variables xé‘ and u& have

been restricted to the values:

X2=4 Ni= Ky
(#.11)
— _‘ .
2= U-ud) e
In a contrary direction if we know the a; we obtain the Z;‘ by the
formulae:
2 r
?-;n (xblu )— (ua) (s +uﬁa4f) Lpa (Xbbl (2~ lxﬂ)
o ' . (#.12)
ga (Xb‘.,l MCY) = (Mllo)3 Mar ‘(; (xl,f, .025 ' "(:)
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the (X%o , v%o) being those functions of (x& , uz) which we would
obtain solving the following equations:

- ¢ s i) }

(4.13)
W:)—! a "P‘* ('xba ’ cb' xa)

Any P,I.S. can thus be discussed using two formalisms. We call the
original one for which the system is a Newtonian-like one the Manifes-
tly Predictive Formalism. This is in our opinion the formalism of re-
ference for any physical interpretation because it makes transparent
that the space of initial conditions (the co-phase space) is twelve
dimensional, i.e., the formalism does not use spurious degrees of free-
dom. We call the equivalent version of it for which the system is of
the type (4.6) the Manifestly Invariant Formalism. The conditions (4.7)
and (4.8) are not necessary to have equivalence between a Manifestly
Predictive P.I.S. and a Poincaré Invariant System of equations of the
type (4.6). There exists other versions of the Manifestly Invariant
formalism (See for instance reference [17], but others can be construc-
ted): each one corresponding to a different method of eliminating
the spuriocus degrees of freedom. In this sense the Manifestly Invariant
formalism which we have presented here is less "intrinsic" that the
Manifestly Predictive one. Nevertheless it leads often to simpler cal-
culations and has a rich. inner structure which makes this formalism
very useful. We shall use it to define the concept of the P.I.S. as-
sociated witﬁ the hereditary dynamical system (3.13). We shall say
that a P.I.S. .

o«
dﬁ-‘ = g (xf ulien) (4.14)
where the functions §: depend on the charges ey » is the P,I.S.
associated with the dynamical system (3.13) if i) it is one of its
reductions, i.e., all the solutions of egs. (4.1%4) are solutions of
eqs. (3.13) and ii) the functions ;g‘ can be developped as power
series of the charges of th?°following type:

=2 " (4.15)
r=s=1

where ?Ed(r s) means a term proportional to eg e:,, The assumption

that the terms ﬁf “p,0) are zero for p or q =0 1is essential

and it expresses of course that the reduction (4.14) has to be com-
patible with the Principle of Inertia when at least one of the charges
is zero. The usual construction of the series (4.15) up to second order,
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i.e., up to terms containing four charges uses the fact {81 that the
functions if; have to be solutions of the following system of integral

equations:
'
~ A oy )
=W Z JA;\.'&. (A Zaar) (%" ’2%;"?) (4.16)
where: i)

Bo™ - earle) - Gowr ,  Kewr = Kx | bl blgey,) (417

ii) Ra(fg) is a shift operator which acts on the functions
as follows:

Rl PO a8 ul) = Dl abepud, u)) (4.18)
and  iii) W"[EJ* is the function (%.12) with the variables Q;a/
and u;a, ’ replaced respectively by xa,+ "aa’ua' and ua, . Since

the lowest order of the integrals in egqs. (4.16) is proportional to
the product of two charges these equations are the basis of a recu-
rrent algorithm to calculate the series (4.15). The first order approx-

imation is:

§2[4]= €2 €a’ Toa! [ (U, Uat) X +(’<4a'ua)u;"] (4.19)

the explicit expreSS1on of the terms fd(l’l) can be found in [18],

ﬂ9] and that of Z“(B iy in [26] . The other terms of order 2 are
zero. Since the guantities w <(2] are themselves limited to second
order it would be meanlngless in this case to proceed to the calcu-
lation of higher order. terms.,

Let us assume that the system (4.14) is the P.I.S. associated with
the hereditary one (3.13). Considering the solutions of (4.14), the
quantities ﬁ;a, and ﬁ; , defined in paragraph 1 can be considered
as functions of (xg‘, ub) . Another construction of ‘the series (4.15),
first considered in reference [18], uses the fact that these functions
have to satisfy the functional equations:

2 ' N A A
TX0@u) = WAt [xbud, A8 mw Al mu)] (4.20)
and be solutions of the following system of integral equations:
Xo.a' —9‘*' t gm’ ua’ + gna' gdﬁs R«'(QQ‘)(Q‘. ?_%:)

A A ' (4.21)
il = s B, |91 R 8 (31 2055, )

Since the lowest order of f{: is proportional to egegs from these



equations we obtain:

4 o (0) L A o A wto) «
Kaa) = Kgt 4 Zaar U ’ Dagr = Mar (4.22)

therefore we shall obtain gﬁél’l) by substituting in the right-hand-
side of egs. (4.20) f;;, and ﬁ;;, by its lowest order expressions
(4.22), This is the same construction which led to (4.19). Expressions
(#.19) and (4.22) can now be used to calculate the corresponding ex-
pressions at the next order. As we see, this method is closer to the
method that we have presented in the first section of this paper in
introducing the concept of P.D.E. associated to a hereditary one. We
said there that the possibility of pushing the construction would de-
pend on each particular case., Since the construction above does not

really depend on the particular form of the functions Wu[2] , We see
here that for a large class of causal interactions there exists a uni-

versal perturbative method to construct their associate P,.I.S.

5. Spontaneous Predictivisation

Numerical solutions of fhe equations Qf motion of two electric
charges, taking into account or not the radiation reaction forces
have been obtained and discussed in the one space dimensional case by
various authors [2ﬂ - [25] . We consider here the problem of integrat-
ing the hereditary equations of motion (3.13) using the method of in-
tervals (in this paragraph we shall say interval instead of step. The
word step instead will have its usual meaning in numerical integrat-
ion language) assuming that i) the two charges are equal or opposite
and have the same mass m and ii) there exists a frame of reference
for which the space trajectories of the initial world-lines f; are
such that a) the middle point of the segment joining the two particles
is fixed, D) they are symmetric with respect to it, and ¢) both
trajectories lie on a plane, say T .

We have used the distinguished frame of refeérence of point ii) above,
choosing as origin of coordinates the fixed middle point. We shall
designate by X the two components vector position of one of the
particles, say a , at time t on Tt . Then X will be at any
stage of the integration the position at time t of particle a’ .
Similarly T and -0 will be respectively the space components of
the unit four—yelocitiis of particles a and a’/ at time + . We shall
designate by X and t the coordinates of the retarded event on l'd
corresponding to an event (¥,t) on La . We shall use as unit of
length e2/m where e dis the absolute value of the charge of either
particle, (We remember that we have taken c¢=1 ).
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Using these notations and conventions the hereditary dynamlcal sys-
tem (3.13) can be written as follows:

%: u ) ;—%::W (5.1)

with: 01 = - A 4
W W A b w0 L- )]

1 (-84 WH s 2R (R B-40) -2

where G is +1 for equal charges and -1 for opposite ones, and

where:
-y A_‘. :.
W(w___ {,‘.-3 (k-@ —/‘x u) 5.5
with: - a - A .
i ,l_f. 3(.—9% , k, = w’cf'-uu . we (AHA")”‘ 4:10.; (/HM‘)"Z
f= 0 C-2T =\ - T2 (5.4)

The time coordinate will be given by the equation:

dt _ o

dt = U (5-5)
To feed the hereditary system (5.1) with initial conditions satis-

fying the conditions that we stated before we have assumed that during

their initial constraint interval each charge had been pulled with a

constant force having the direction of the velocity. More precisely

we have assumed that during this interval of time the parametric equat-

. - . . .

ions x (T ) of particle a were solutions of equations:

dX _ = Ax_ . M =

SX = . K = u .6

dt a'c | (5 )
where K is a constant., Starting with initial conditions §% ’ ﬁ;

at t=0 we have integrated backwards in time these equations until
we have reached the retarded event (xN, N) corresponding to the
event (—x ,0) which is the initial position of particle a’ . N
indicates here the number of steps of the corresponding interval., We
have used a variable step size version of the elementary Euler’s me-
thod. Let (i%, tB) be the event corresponding to the end of the
B-th step. The step size 4T, between the events (§l+1, tA+1) and
(El, tA) has been chosen to be :

A

| X o
ag= —— {-tawd + (B4R, -
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- [ty - (Ra%) T 14 42 = (%437 } (5.7)

Let us consider the straight world line passing through the event
(-X,, t,) in the direction of (<8,,up) . AT, is equal to the
proper time measured along this straight line between the event
(;Ek’tA) and the intersection of it with the null past cone with
vertex at the point (x ,0) divided by ©N-A . The quantities 'ﬁ%
(B=0,.., M, AT, (A =1,..., M), ¥ and ty from which all
relevant information concerning the initial interval can be recovered,
were stored for future utilization.

Using the initial conditions f; constructed as we have just men-
tioned we integrated the hereditary equations (5.1) by the method of
intervals using a variable step size version of Euler’s method. Let
us call (xB I tB 7 ) the coordinates of particle a at the end
of the B—th step of the J-th interval. The size of the step

A'ZA T4l between the events (xA 417 ty I+1) and (XA+1 T412
A+1 I+1) was taken to be: :

A A
A tA|I+1 - khﬂ:‘\-‘ .A tAlI - 'AAII+1

A
+[‘\£A|I+‘l' ATz~ 2A.IM)1‘A§:[ +20 r 0T L‘:‘ m} (5.8)

where:
A |
LA.I+1 - .eA.r_._' (‘t‘|:+4 th.[) (509)
A
and where T; T4l ° k T4l » fA JTel and 4A T4+1 are the quanti-

ties defined by egs. (é 1) correspondlng to the event (xA [T+l
A I+1) . The choice (5.8) guarantees that the event (XA+1 I+1’
A+1, I+1) will be in the null futurg of the even (-xA+l JT? A+1 I)
in the world line, of particle a’/ . L is in principle zero but
because of the unaccuracy of the numerical integration, it is not
exactly zero. It is therefore necessary to include it in the expres-
sion of A‘CA [T+l oz,
At the end of each step we have calculated the acceleration T
of the corresponding second order associate P.I.S. We have not used the

to prevent a systematic error in the calculation.

explicit available expressions because they are cumbersome. We have
instead proceeded as follows. We have integrated backwards in time,
using again the variable step size version of Euler’s method, with

ZSCA given by eq. (5.7) , the first order P.I.S. associated with
the hereditary equations (5.1). Taking into account egs. (4.19) this
system can be written:
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dE_ S rre, gw] i) R @DE] (500
dt 4
Starting with initial conditions (f},t) we have integrated these
equations until we reached the event (iﬁ,tN) which is in the null
past of the event (—f;,t) . We have then used these data and egs.
(5.2) to calculate the numerical value of TK [2] . These quantities
should coincide with the numerical values obtained from the explicit
cumbersome expressions modulo third order corrections,
We have considered the two following quantities:
5 W AT 00 -[4- we g ll/'v
= l W ru‘ ’ mm] mtu‘

which give respectively the percentage difference between the modulus
of 37[21 z €23 , and the sine of the angle between these two
vectors., The systematic behaviour that we have observed for a variety

(5.11)

and

of initial conditions and values of K is that these quantities tend
to two small values Da) , Sa) which depend on each particular case.
These values are zero if the distance between the particles increases
without limit. They are small but non zero if this distance is bounded

from above. This being due in our opinion to the fact that 'K 23

it is
only an approximate expression. At the end of the first interval the
values of D and S8 are aiready quite close to their limits. This

is connected with the disappearance of the discontinuities of the ac-
celerations at the end points of the first interval., We give below the
numerical data that we have obtained in one particular case (G = -1)
which illustrates these remarks. The initial conditions are: x=0,

y=6 , uX=O.25 ’ uy=0 , and the value of K=-0.2 ., The number of
steps of each interval is 8 (we have used a 319 registers version of
an H.P. 41C).

n (steps) X y D 5

2 0.38 5.99 27.3 0.3

4 1.05 5.95 46.6 0.3

6 1.95 5.84 34..0 05
8 2.76 5.69 -73.7 1.1 1072
10 3.11 5.59 - 3.6 1.1 10”
12 3.73 5.39 - 2.9 9.4 1072
14 .55 5.03 - 1.k k.8 1072
16 5.27 .63 - 0.8 1.4 1072
18 5.58 4,43 - 0.8 1.% 10~2
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The behaviour of the quantities D and 8 Dbecomes quite different
if the distance between the charges becomes too small. This, in our
opinion, comes again from the fact that 'thl are only approximate
quantities unreliable at small distances.

We conclude from all this work that the electromagnetic correspon-
ding to interaction becomes spontaneously predictive, i.e., the P.I.S.
ry t2] is an Attractor of the hereditary system (5.2) as long as
the motion of the charges remains confined in a domain of configurat-
ion space for which the distance of the charges is not too small., OQur
numerical exploration would have to be extended and improved to make
more preclse statements in particular abouth the border limiting the

domain beyond which there is no spontaneous predictivisation.

We have done a similar work with the gravitational interaction and
we have reached similar conclusions. Spontaneous Predictivisation is
therefore a mechanism which works for the very simple examples that
we have considered in the first section and for the Electromagnetic
and Gravitational interactions. Would it be too rash to conjecture [26]
that it is a universal mechanism connected with pure retarded equat-

ions?
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FORMS OF RELATIVISTIC QUANTUM DYNAMICS
(Particles vs, Fields)

F, Coester

Argonne National Laboratory+
Argonne, IL 60439

A systematic presentation of relativistic quantum mechanics usual-
1y begins by specifying the properties of an algebra of operators
called "observables". It is then assumed that the principles of rela-
tivity require that this algebra be generated by local fields, Indeed,
theories in which the algebra of dynamical variables is generated by
the canonical coordinates and momenta of particles lead tobunacceptable
conclusions if one assumes that the canonical coordinates are obser-
vable particle positionsl. That assumption is not necessary. In the
absence of long-range external fields, only asymptotically free’par-
ticles are actually observable. The results of a scattering theory
are the observables. The general framework of relativistic scattering
theory can accommodate either elementary fields or elementary particles.
My aim in this lecture is to contrast relativistic field theories and
particle theories and to show how particle dynamics can be construct-
ed in agreement with the requirement of cluster separabilitye.

It will be convenient to introduce the general framework and the
notation by reviewing the assumptions and some results of an abstract
scalar field theory o , without emphasis on mathematical rigor5.

1. The Hilbert Space

The states %4 are vectors in a Hilbert space HH .
2. The Field

A1l dynamical variables are functionals of a local scalar field
A(x) , x = {®,t} ; the fields commute for space-like separatioms.

+ This work performed under the auspices of the U.S. Dep. of Energy
under contract W-31-109-ENG-38.
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[Aw, Acxn]) = 0 - (1)

for (x-x )2 = (£-2)2 - (t-t )25 0 .

3. Poincaré Invariance

The relativistic transformation law of the states is given by a
continuous unitary representation U(d,A) of the Poincaré group,
and the field A(x) satisfies the covariance relation

U{A.A)-A(x)-U"(d.A) = A (Ax+d) (2)

The generators of the infinitesimal transformations are 3,H for
the space and time translation, E;K for the rotations and Lorentz
boosts, The set of all ten generators is denoted by G ,

G={$|H,5.K} (3)

The generators satisfy the commutation relations

[%.%l=0 . [F.ul=0 )
(3., 7] = LE\ €ckm Im (5)
17.,%)= i Z eum®n , [Tnl=0 (6)
(3. Kl = 4 L Eour Km (7)
[k, Ke) = =6 22 €icm Tm (8)
[KiRY= iS00 [KH) =< (9)

- -

It follows that fﬁH and J,K transform respectively as a four vector
{P*} and as an antisymmetric tensor {J*]} , where Jot = K. and
J12 =g

5 *
4, The Vacuum
There is a unique invariant vacuum state 10> , U@,A) \O) = |O),.

5. The Physical Interpretation

The operators 323’ and H are interpreted respectively as the
angular momentum, the momentum and the energy of the system. The ope~
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rator M2 H H2 - §2 is the square of the mass. The spectra of H
and M are nonnegative and the vacuum state is the only state on which
M vanishes, this means we exclude zero-mass particles., Since H
governs the time evolution the dynamics of the system is determined
if H is known as a function (or functional) of the elementary dyna-
mical variables.

6. One-Particle States

In the orthogonai complement of the vacuum state the mass operator
M has a point spectrum

O<m1£m2£m3 cees o

and a continuous spectrum from 2m to ® . To each eigenvalue m,
belongs to an invariant subspace 7{i 1%:]{ on which U(d,A) is
an irreducible representation belonging to the mass m, and the spin
S; .
For the sake of simplicity we assume in the following that there
is only one mass eigenvalue m and that the spin vanishes. A one-

particle state \Ll € }tl can be expressed in the form

o= fd‘p IF> f® | | (10)

where f(B)G.Cz and |P) transforms under Poincaré transformat-

ions according to

ec?.g E> - %> eu;-d—wd") (11)
and

U B =18 (%, (12)
wﬁere w :=q 52+m2 , Dpi=Ap, P := {7,w} , U@ := U,A).

Let A(f,t) be defined by

A.E) = .gjalx {Ac 234 g0 (14)
where

;(7‘):= lo‘a -W-Vt'}((?)‘e;‘?';_w{) (15)

and X(E) is a smooth function. We assume that the matrix elements
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(5\ A(f,t) |0> do not vanish. It follows from the covariance of the
field A(x) that a constant factor can be chosen such that

GFLAQY 1oy = 302 (16)

It is then possible to construct a covariant field B(x) as a linear
functional of A(x) such that6

B 10> = [45.)F> 1 an

7. Scattering States . The states

00 = B BU® .. Blfa.t)]|0) (18)
satisfy

b)) -dd) — 0 (19)

as by, t, —I o .
They have therefore strong limits

sl b9 = 3 (20)

t2too

+
The states 1i(') are the scattering states and the S matrix is

— ) =
5@.‘ = (';I;P ’ q"(‘)) (21)
The vector ¢ (1:)»L defined by (18) is & linear functional of the ten-

sor product ® fi , i.e.

[S1]
W e
b = 31 8 . (22)
If we define the operator Hf by
n n
He @ %, = (Z w)e x, (23)
it follows from

(Ht -iHt _

e BIX,0) e BIX ) » (24)

that the time dependence of &(t) is given by



.He _.
Bley = e "o g ot Het (25)
Let
n :
He 2= ® &5, d¥po) (26)
and
co
The vectors B(f,0).... [0} deflne the operator @& from k into
# and the scattering states V¥ %) are
€3]
W = . f (28)

with Xe3(f and the operators Sl +

cH o Ht
Q, = s-hm Mg o

t*e0

(29)

are generalized wave opératorsV. The assumption of asymptotic comple-
teness can be stated in the form

a0l =0 af=1 (30)
It follows that the S operator,
..nt (
s '-Q* ﬂ_ 31)
is a unitary operator in 7ff .
Let Gfi be the generators of the irreducible representation of

the Poincaré group on ;ffi belonging to the mass m and spin zero.
The generators of the Poincaré transformations of kf are given by

The Poincaré invariance of the scatte}:’ing states is expressed by the

- intertwining relations

The invariance of the S operator
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(&;.81=0 (34)

is a consequence. The proof of the existence and invariance of the

scattering states3’8 depends critically on the assumed properties

of the local field A(x) . ©Note that our construction of the operator
® involves an integral over the hypersurface +t=0 in the definition
B(f,0) . Thus § is invariant under translations and rotations

BE=%% , Te=207 (35)
but not under Lorentz boosts;

Ke + &K (36)

n9

invariant hyperboloid or the hyperplane x, + t=0 we would have
obtained a "point form" or a "front form".

We have thus an "instant-form"~’ dynamics., Had we integrated over an

If we have Poincaré generators in H for a noninteracting system
and add interaction terms to the Hamiltonian then, according to (9),
either K or P , or both, must also be interaction dependent. In
canonical field theories the Poincaré generators are expressed as
integrals over the energy-momentum tensor T8’ (x)

H = Io\’x T (37)
¢ = j&x T (%) (38)
£ =[x 2.T=) (39)
J; = % Z; €imn [d’-x ('x"‘ TRy — %" T’"l*)) (40)

This'construction solves the problem of finding compatible interact-
ion dependences for H and ¥ . The commubation relations (4)-(9)
are satisfied if and only if the energy density Too(f) satisfies
the local Schwingerlo commutation relations

[T, 0] = ; [T A S R-%) -

’ -] (41)
- To@). 2, S‘(k"-o‘?’)} +0o(x,%)
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where the function ¢ (¥,2’) must be antisymmetric, ¢ (%,R') = -o (')
and satisfy the relations,

[ol’x- F(RE) =0

jd’x-;'?-O'(i‘. F)=o0 (42)

The condition ¢ =0 is sufficient but not necessary. Clearly the
locality features of the field theory are essential for the relativis-
tic invariance in this construction. Particle creation and the necessity
for infinitely many degrees of freedom are thus intimately connected
with the relativistic invariance.

The question remains whether a satisfactory Poincaré representation
can be constructed if the elementary dynamical variables are the cano-
nical coordinates, momenta and spins of a finite number of particles,

In the absence of the locality features of field theories, it seems
reasonable to impose the following cluster separability requiremente.
Let a denote a partition of the N-particle system into disjoint
clusters a; , i=l ... n, . The states of the cluster a; are vectors
in a Hilbert space X ai - The Hilbert space H 1is the N fold temsor
product of one-particle spaces and hence
L7
H=2e H, (43)

(1

for every partition a . Let Uai(d,l\) be a unitary Poincaré repre-
sentation for the cluster a; . We will also use the notation Uéi(d,bo
for the operator Uai(d"A) ® 1 acting on the tensor~product space
(43). The representation Ua(d,l\) describing the noninteracting
clusters of the partition a is then given by

o
U (e, 0) =T U, (8.40) | (44)
Equation (44) implies the relation
Na
Ga = Z_:\ Ga: (45)
for the generators. The operator Ta(gg y 4 = 47, &5 yeeey 4.,

Ngp
Tald) :=T U, (d;,1) (46)

translates the clusters of the partition relative to each other. The
cluster separability requirement for the representation U(d,A) of
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the complete system is then
s-1im (VE.A -U6N) Ta@) =0 (47)
min(d;-4;)*— e

Several functions of the generators will play an essential role
in the further development. The covariant spin vector w,. is defined

by

L 3
W, = é. AL P"f,w | (48)
It follows that
W= :F-i! .—w,-=H3.+:§"E- (49)

The Newton-Wigner position operator11 can be defined as a function of
the generators by

T.= 4 H_4E+E'H" ———-——-—P W
T:=4{ ) I (50)

It follows from this definition and the commutation relations (4)-(9)
-
that X and P satisfy canonical commutation rules,

(.xl=0 , IxBl=17 (51)

and that they commute with the canonical spin 3~ defined by

-l

?:'—'» J—ix-f (52)

The canonical spin 3’ is related to the covariant spin vector W, by
a Lorentz transformation

L (@ W= {M7,0} - (53)
where 'a := B/M and L(as is the inverse boost defined by

L@ {&,Yna*} = (0,0,0.4) (54)

From Eq. (53) it follows that

WHW, = nt (55)



58

Conversely the generators can be expressed as functions of the oper-
: -
ators M,ﬁ:X and '5 defined to satisfy the commutation relations
(51) and

(F.ml=[Eml=1Fnl=0 (56)
[5»::‘-}’&] =4 g €ium -é.m (57)

[7.X)=[7.8)=0 - (58)
We then have the expressions

H=\VFYywme , ' (59)

3'.'- i"-f +_3',. (60)
and
K= L{HZ+ZH} - (T=P) (Mem)™ (61)

for the generators which we write schematically as
-ty

G-:GI(M,E,}',J) ‘ (62)

-y -
In an instant~form dynamics the operators P and J are the same
for interacting and noninteracting particles. The generators for
the noninteracting system are

G = G, (M %, 3,7) (&3)

12

The Bakamjian-Thomas construction for interacting particles is then

Gor = Gy(Me+ v, Ea- 2,7) : (64)

where v commutes with B R T and io .
Similar constructions are possible in point-form and front-form
. -
dynamicsl3. We may scale X and i by M and define

=

8= :‘S/H , Ri= MX s, Eiz=41+3" (65)

It follows from (54)-(61) that
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H=Me F:n‘& (66)

T= Rxa +5” (67)
and -

K= {(Re+eR)- §%Q (are)” (68)

- . - - -
since R can be expressed as a function of J,K and Q we can write
(66)~(68) schematically as

G =G, (MB,T,K) (69)

and the Bakamjian-Thomas construction i314’15

-y

Gy = Gp (Mosv, G, , T R) (70)

. - = - - -
where v commutes with J,K and Qo , and J,K are the same for the
interacting and the noninteracting system.
For the front form we need to identify the generators that leave

the null planes n.%+t = const. invariant. They are 3.?, 2.7 and

B, := H+R.B L B = B-R @D (71)
E := K, +&xT | (72)

where - ‘
K,:= K-/ #@K) (73)

P := H-A-F (74)
and
F := !Zl-zx'l' (75)

The front-form Bakamjian-Thomas construction is schematically15

-y

Gg'r =G'F(M°+V ' g;.?*'ﬁ ,E,‘RE,R?)

-p
where v commutes with P_, P, ,

a spin vector that satisfies

-2 - - .
E, 7.8, 8.7 and S, , and ¥ is
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=} (76)

In formulating the scattering theory we concentrate again on the
instant form. Let a be a partition of the particles into n, distinct
clusters such that for each cluster a; the mass operator Mai has
at least one point eigenvalue. The corresponding eigenvectors |xi;ﬁ;ﬁ)
define a channel & . They satisfy

”ail"‘.‘. tFn"‘> = IduFII"> Myt . 77
il Bupd = 140 Bpy S, (S +4) (78)
Tl Fopd =l fop> ¥ (79)

and transform under Lorentz transformations according to
Sai —
- - . lad " . w
U,; (A) %8, 0> -g o, f. p'> D [R (AB] V4, (80)

where D° 4is the 2s+1 dimensional irreducible representation of
the Wigner rotation defined as the product of three Lorentz transfor-
mations

R (A,5)= L (Fm) A L' (#/m) (81)

The tensor product of these eigenfunctions defines the operator Q“
from 7{f" into X . With

K, = ® % (82)
and

8, 7‘49-.—. o for o[ (83)
we define

3:= L B | €

This injection operator @ has the same symmetry properties (35), (36)
as before. Existence of the wave operators
cHt
ﬂi- (Hl 5. H.F) = s;h‘m e §

+t

¢_i “;t (85)
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does not guarantee their Lorentz invariance16.

In order to discuss the existence and invariance of the wave operat-
ors it is useful to note the tensor product structure

X = 4‘(?,&’15_')972 (86)
and
X, - .l'('f.a'f)@ﬁf (87)

- . N
Any vector deH is represented by a vector valued function %4(P) (¥4
such that

4t = jd’?- N (B (88)
Any translationally invariant operator (% has the representation

#101P) = §(F-B) &® (89)

>

where O (B) operates on # . For the injection operator § we have
(31315, = §(3-3) &P (90
where & () maps ¥, into X . It follows that if VW is defined by
V= H -éH; (91)
then
T = 0D -8@ i, () (92)

We are now in a position to state sufficent conditions for the existence
of the wave operators (L, .

- .
Theorem 117. If for every momentum P there is a dense set

A A
D eD(H;) such that for X €D

&M 2 e il a EPIEN)

+ =
e” let;(‘ is strongly continuous in t and
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A

o0 A cifl b,
[ae v e al<w

then i ﬁ(ﬂt
s-lim e .
tate

exists.
From theorem 1 it follows that for any X e X, there is some
-»
constant C independent of t and P such that

tiABEs o i (P - .
I {2 HP G S MPE_g @ 2B chidl  (o3)

It follows therefore from the dominated convergence theorem18 that
i" LY AP A
dim [d*vl{e APt s e P g, @ Vim0 (94)
tatew =
and hence
(Bla, (H & u)1B) = 3(F-F) 2. (P) (95)

Theorem 2. If either H,§ or M,® satisfy the conditions of
theorem 1 then both L ,(H,®,H;) and 0, M, $ M) exist and
they are equal.

From the generalized Kato-Birman invariance principle19 and theorem
1 it follows that both @, (F,&,B) and @, (1,8 ,A.) exist and that
they are equal, - : -

a, (A.8,8)= 0.8 0) =8, (96)

In the following we assume that the conditions of theorem 1 are safis-
fied, If the injection operator @ satisfies the condition

-y A
e = dx; (97)
then :
e d -y
X.ﬂ.t =Q-¢ I;
It follows that the wave operators L, and the S operator are

Lorentz invariant. Conversely if ﬂ+(ﬁ, Q,Hf) is Lorentz invariant
then there exists a & such thatt



and
i =¢X, | | (99)

The construction of interacting representations that satisfy cluster
separability proceeds inductively for an increasing number of particles.
For two particles the Bakamjian-Thomas construction satisfies cluster
separébility and idﬁ ==@§f . For three particles Mutzego has shown
that the Bakamjian-Thomas construction cannot satisfy cluster separa-~
bility unless all two-body interactions vanish. However, for two
interacting particles and a noninteracting spectator it is manifestly
possible to construct a representation G and Lorentz invariant wave

.operators which satisfy-cluster separability while f'# fo .
The recursive construction for a fully interactive N-particle system

13,21

proceeds along the following lines . Suppose the problem is solved

for N’<¢ N then we have for all partitions a into n, clusters,

n, > 1, a representation G(a) of the form

Na,
G = L. G (100)
[£1]
These generators satisfy by assumption the cluster separability con~
dition

(Gw@), = Glaab) (101)

where, for any operator ¢, tﬂa is the operator obtained from ¢ by
turning off all interactions between different clusters of a . Know-
ing G(a) for all a is sufficient for the construction of the
injection operator § and a Euclidean invariant unitary operator A(a)
which satisfies

Aw) f,‘ = f,A(a) (102)
and
(Aw), = Alan b) (103)

The desired gencrators for the fully interacting N-particle system
are then ' '

G=A'6 (R, %,77)A (104)

where
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Ai= ep (T C, ltn bew) (105)
Cpi= EO™ (ne-1) ! (106)
and
i= 1, G AL M A (107)
Note that
Ac= A and  G,= Gla) (108)

From Q we can construct an injection operator 3 satisfying

£3 =81, (109)
such that

s-tim (8- 1) ¢ oo (110)
It follows that

Q, (M, 3.M) = AR, (.80 (111)

and hence the wave operators M1, (H,Q,Hf) are Lorentz invariant,
- -
K Q, (H 8. H) =0. (K3 H) K (112)

For interesting applications particle creation is clearly essential,
but it is not required by relativistic invariance. It is worth noting
that particle theories do not become field theories when they are
generalized to include particlé creation. The relativistic Lee mo~-
de1‘2‘2"13 is not a field theory. The elementary particles are N, ©
and V ., The N© system allows a BakamJjian~Thomas construction where

v has matrix elements N®2V ., In many-body systems the numbers
NN+NV and N&NV are conserved, In the recursive construction of
the many-body representation these numbers play the same role as the

total particle number before.

Perhaps more interesting is an NTW system with a vertex interaction

Nrz2N in the mass operator. The system can be truncated to allow at
most one pion without loosing the relativistic invariance, but at the
expense of cluster separability. Cluster separablility can be achieved
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as the number of pion is allowed to increase indefinitely, but the
theory does not become a field theory in that limit.
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2)
3)

4)

5)
6)

7)
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10)
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RELATTIVISTIC-PARTICLE QUANTUM MECHANICS
(Applications and Approximations)

F, Coester

Argonne National Laboratory+
Argonne, IL 60439

In this lecture I hope to show that relativistic—pérticle quantum
mechanics with direct interactions is a useful tool for building models
applicable to hadron systems at intermediate energies. To do this I
will first describe a class of models designed to incorporate nucleon-
nucleon interactions, pion production, absorption and scattering into
a single dynamical framework without dressing the nucleons with pion
cloudsl’g. The second major topic concerns electromagnetic interactions.
In the first lecture (referred to as I in the following) I specifically
excluded long-range forces and zero-mass particles. Since many of the
experimental data in hadron physics involve electromagnetic interactions
this limitation is a major defect which must be addressed.

The elementary particles of the NNm model are the nucleon, the
isobar and the pion. Let H N * ?ﬂA and 76, be the Hilbert spaces
of the corresponding one-particle states. The Hilbert space of states
under consideration is then

# =MK%, ¢ K87, GMNGRNGRR €))
The interactions are such that the A decays into a pion and a nucleon.

The physical particles are the nucleons, the pion and the deuteron.
The space is therefore

7({"—-"7(/”9 k)[” % Ridekft ® RINQRFNB Rfﬂ ‘ (2>

+ This work was performed under the auspices of the U.S. Dep. of
Energy under contract W-31-109-ENG-38.
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The generators Go and G are defined on these spaces in the obvious
manner. Following the general scheme of I we first construct GNN'W
and GN1t y for the partltlons (N)m  and (NWN . Next we need
mass operators M and M which commute with X and are
scatteiing equiva?ggt to NN?? Nand MNu N -
Let T, -and P, Dbe the momenta of the two nucleons. States in
K . o= 76 ® ¥y are represented by functions ?(pa’pb) » OT equi-

NN
valently by functlons of PNN and Ea , where

:‘;nu = 1;:\ + '_P.l. (3
and
(?uu Iwu») o )

Spin variables will be suppressed throughout in order to simplify the
notation. The Bakamjian-Thomas construction of MNN is straightforward,

i.e.

(B, Ro Ml B, )= S@EL-BL) - (RANE) (5

A

where MNN is independent of 5&N .

(BNA k)= 2 (Ram2)® §E-R)+ (EV\R) (o

The wave operator IINN+ for nucleon-nucleon scattering is

Mt Mot
Quue = 2, M, M2) = e ™t

(7

tw“w

(7. £\a,,, e, B,) = §,-F.) (K4, k) ®

NN*\

A . A
The wave matrix ) NN+ cen be obtained from VNN by solving a Lip-
pmann~Schwinger equation. In the presence of a pion spectator we have

(Fe Bl M IRE B = s(B-B) (BLEm,88) O
The generators are then additive,
angn = P Ay (10)



68

K _-= 'ﬁw + V“ (11)

W,

and the wave operators remain unchanged,

Q = QO (12)

NN, L NN

where
(fPo 500, BB 5) = SR SE-3) (RIA,R)  a%

- -
Instead of representing states by functions of ka’PNN and Dy s

‘ g - -
we may choose as independent variables ka,f” and q_, where T,
is defined by

= L (B1,) pn (14)
The virtue of this choice is that X  is represented by iV,
Lo 3.3)=:V 4% 27) (15)
end that Ty g defined by
Pl #= Faf, % o (remt)™ (16)
where

(RN LT = S@ ) §E D) (KN, 1K) an

commutes with -)Eo . o

The operators MNN“‘. and MNN"I are defined by stipulating that
they vanish on ”NN and on 7(NA’:= RNB RA . It follows from (16)
and (17) that

ol

LI | (18)

NNt

and

(3. Phes) Gy a e, P = 5(3.3) SR (K, 16),,,18) 9

Since ?1"" = 'd:‘ follows from f)’; = '13,‘ and ?1\§N=§’NN if and



only if l E:l = Ii;l , We have

S'\N - Q‘mu» 'Qun— = 'QNN+ ‘n'nn- (20)
and the unitary operator A(NN,n ),

Al )= 0 at (1)

)= A lane Ahaps

transforms MNN,‘u. into MNN,‘I ’

~ -4

Vi = AlNT)-M - A(NT) (22)

For the cluster consisting of nucleon a and the pion we define

B 1= Rt ha (25)
k, = L(ﬁn/“:n)?n . (24)

State vectors in HNOEA ® ”NORH are represented by 3-component

-y

. - -y
functions 4N(pa) y  ¥alB) , '4NW‘(Pan ,k“ ) . The operator M
is given by the block matrix

m, o 0
ﬁ‘“ = 0 mA VAUZ-“)
- - - 4 -
0 VAR Wk, Bl - ) tep v, e,)
(25)
where
g 2 e 2 A
W) = (Bem?) + (kiem ) (26)
If we add a spectator nucleon b the Hilbert space is
%=-(rexenroxlex, 7
Gan is defined in the obvious manner and
Gan.b = Gran' + G'h (28)

It follows that
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Qe = Rane (29)

an,bt

As an operator on functions E; , B and a% , defined by

q, = L (P/m) py (30)
E; is again i‘ﬁp . The mass operator ﬂ;r,b defined by
ﬁm,b i= (i'bz"' ﬁin) %y (3:: +m“z)4/; (31)
commutes with i; if
(3.3 1 A lB3,) = 56D §(3,-7,) Pgn (32)
where ﬁan is the block matrix (25). The representations T b

am ,
and Gan,b v
The complete mass operator M is then

are scattering equivalent.

M= Mnu,u+man.b+ F‘b'n.a.' 2 Mo 1-V°+V" (33)
where V0 is a two-body interaction in ?NN ® ”NA and vanishes in
IfNNn , and V¥ is a three-body interact%on in ”N’Nu with transit-

ion matrix elements to }‘NN . Betz and Tee™ have fitted the parameters

of a model of this type to pion-nucleon scattering and to both elastic
and inelastic nucleon-nucleon scattering. The application to pion-
deuteron scattering produced reasonable results.

We now come to the problem of electromagnetic interactions. What

can be done to combine the quantum electrodynamics of photons and

electrons with a direct-interaction hadron model? Is it possible to

add to the Hamiltonian the standard interaction of the form

H’ =Id’x : j:m- AR (34)

where jg(g)‘ is a hadron current density? The following lemma should
be useful.

Lemma: Assume that 3,§,H,i satisfy the Poincaré commutation relat-
ions and define

H' :=jd’a¢ - () (35)



7
K’ := [e\’x-&".nz(&') (36)

-»
where 7 (0) commutes with T and ¥,

[f.qw)] = [quo\] =0 (37)
and
Tll;) = e""?';.«lw) P (38)°

Y
Then the generators 3,?,H+H', K+K' satisfy the commutation relations
(I.3)~(I.9) provided K’ commutes with H’ and the components of X’
commute with each other,

[K.n]= },jd‘«ﬁ\’x' () - [qeRr,mzn = 0 (39)
[K';,K'j] = ﬁ-[o\’xl & L. €an (X%, [-»lli'),qlti')] =0 (40)
LY

From (35), (37) and (38) it follows that

[Fwl=1T7.wl=0 (41)
and from (35), (36), (37) and (38) we have

[J".,Ic;] = cz: Eejn K’ (42)
and |

Lk/, P )= is H (43)
From (38) and (I.9) it follows that

Lk,, el = x I, D] Cun)
and hence

[k; 1] + [k’ Hl=0 (45)

Thus Eq. (39) is necessary and sufficient for

[K+K', Het'] = &P (46)
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to hold. From (44) it follows that ;
[K.kT +[K/ K =0 [C%%)
Thus Eq. (40) is necessary and sufficient for
[K+k{, K +KL ] = ‘-Zﬂ: €icm Im (48)

to hold. Obviously local commutativity, Eq(i), m %] =0, is suf-
ficient for (39) and (40).

For practical purposes the conditions (39) and (40) can be ignored
for the large number of applications where H’/ is a perturbation and
the first order is sufficient. An example is high-energy electron-
nucleus scattering in the one-~photon exchange approximation.

Let G, and G, be respectively the Poincaré generators of quantum
electrodynamics (electrons, positrons and photons) and for a system
of hadrons with direct interactions. Then the operator 11(2) .

N = 4R - ALR) (49)
satisfies (37) if 3j*(X) 4is a hadron current density satisfying
U, (A)-§410)- Uy (M) = A", 47(0) (50)
and A,(}) is the Maxwell field,

U,,, (- A%0) - U (A) = A, -A%(0) (51)

No general prescription is known for the construction of the current
density for directly interacting hadrons. Approximate solutions can
be attained by formal expansibn in inverse powers of the velocity of
lightB’u. Classical theory suggests that the construction of a covar-~
iant conserved current may be related to particle position operators
satisfying the world-line conditions. Canonical coordinates cannot
satisfy the world-line conditions exactly5 but they can be satisfied
approximate1y6 in a formal expansion in inverse powers of the velocity
of light to order l/c2 . The approximate construction of covariant
conserved currents and the approximate world-line conditions are indeed
closely related in that approximation but the approximations do not
seem to point to an exact relation.

A word of caution is in order concerning expansions in powers of



73

1/c2 . The velocity of light is a convenient tage, but its power does
not by itself measure the size of terms in the expansion. The relevant
physical quantities are the velocities of the particles. In a classical
theory the expansion is Justified if the velocities of all particles
are small compared to the velocity of light everywhere on each orbit.
In a quantum mechanical theory the expansion is in powers of the un-
bounded operator 52 /(mc)2 (e=1) . An expansion of C§2+m2)vz

powers of P°/m must be Justified by restrictions on acceptable sta-
tes f. The error of a nonrelativistic approximation

I ((m2e 52" m———)q.ll (52)
may be acceptably small. The errors of successive improvements

2 =y
'/ P P
"((m'w Hha_. m—g—'—'{ +'8——;-‘—‘-)¢“

and

- =4 a6
g\ M Pt _L P - P
I (mer B2) B e “’ms)«lfll

may or may not be successively smaller. Momentum-space wavefunctions
typically decrease as some power of the momentum for large p . Depend-
ing on the nonrelativistic approximation may be quite adequate, but

the improved versions are much worse. Or perhaps the first relativistic
correction is still an improvement. The moral of this story is simple:
Quit while your are ahead! Don ‘t press your luck! Also it may be

legitimate to expand in powers of some momenta and not others. In the
applications of the NNmn model discussed earlier the pion velocities
are usually relativistic, baryon velocities are usually but not always
nonrelativistic.

Expansion in powers of l/c2 have been widely used for the purpose
of constructing compatible interaction terms for X and H without
recourse to the Bakamjian-Thomas construction. The procedure has yield-
ed satisfactory results to order 1/c2 « In that approximation cluster
separability, the world line conditions and a reasonable relation to
conventional field theories are all closely related.
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1. N-Body Relativistic Systems

In Predictive Mechanics, the basic equations of motion form a true

differential system 1) .
docl dvy
=T T R eemnen) ()

where the generalized accelerations % are submitted to the Predicti-
vity condition.

n L
(% +3022)80=0 |, etk 2
Phase space is the bundle (T(Mu))N equipped with the natural coor-
dinates Xy %e; Dyyee Wy o Whenever no confusion is possible we drop the
greek indices &= 0,1,2,3 signature + ~-—-

No summation over repeated particle indices, except if explicitly spe-
cified. Condition (1.2) is stronger than the simple Frobenius integra-
bility condition, since it insures individuality: the solutions have
the form

Yo = Xa (Ta) (1.3)

which allows for world-lines. In the first presentation of this forma-
lism, we assumed additionally

3" "rq,, == 0 (1'4)
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‘which implies that each 1&? is constant in the motion. This constant

is then identified with the squared mass mg and each T a is propor~
tional to the proper time, viz.

Ta_'—'- Aa/m" (1-5)

The framework can be generalized provided the constancy of masses is

recovered somewhere, which is the case for hamiltonian systems. Ac-
cordingly eq. (1.4) can be regarded as subsidiary. When (1.4) is drop-
ped the parameters 'Ca are ho longer affine parameters: (1.5) is no
longer valid 2 .

The dynamical system described by eq. (1.1) is equivalent to a
(1ocal) N-parameter abelian group gy acting in (T(MA))N . This group
of multi-time translations has the infinitesimal generators

Xa_-: Va'ga + Z,_?__ (1.6)
@ Va
(Geometrically each X, defines a vector field).

The predictivity condition (1.2) simply reads

[XA.X.b] =0 (1.7)

and the orbits of gy are N dimensional surfaces, they prOV1de a
foliation of phase space., The projection of each orbit on (M4)
yields the cartesian product of N world-lines (i.e. a world-surface).
When (1.4) holds, fixing the positive value of m§ selects a 7N di-
mensional submanifold which is invariant by By -

Suppose we are given a multitime dynamical system, satisfying both
(1.2) and (1.4). In order to have a hamiltonian formalism we should
look for a symplectic form invariant by gy -

Since a famous theorem 3) forbids to require that the positions
Xq9eee Xy be canonical variables, the matter is ambiguous and addi-
tional prescriptions are needed for the hamiltonization. It happens

that the inverse procedure is more easy to carry out. Thus constructi-
ve and practical motivations lead to consider a_priori a hamiltonian
system in an abstract phase space where a set of canonical coordinates
8re Qygesey Ay 9 Pysecey Py o

Multitime Hamilton equations of motion can be written, but they are
eventually identified with eqg. (1.1) and finally a dynamical system

is recovered in terms of the natural coordinates Kygeees Xy Vyseey Ve
The key of this identification is the transformation 4d,p, &= X,V
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from canonical to natural coordinates. Of course, the procedure is
not mathematically unique, and physically reasonable prescriptions
are invoked in order to select a dynamical system.
In this a priori hamiltonian approach4 one starts from N covari-
ant hamiltonians H1 cees HN which are functionally independent and

strongly commute among themselves
{Ha, He1 = O (1.8)

Example: The free hami}?onians are ﬁ; = Y2 pg . When interaction is
present we have Ha = Ha + Va where Va are pseudo-potential terms
chosen as to satisfy condition (1.8). Naturally gq, transform as
points in Minkowski space M, , whereas the P, transform as four

vectors. Standard Poisson brackets are assumed
o - of
{q-av ?bPS"" gﬂb'ig

and the Poincaré algebra is generated by P = Py + «+.0 Py and M =

4] APy + «eo QyADy - The hamiltonians are not directly related
with the energy but rather with the masses. They generate the Liouville
operators (or equivalently vector fields) X, through the definition

XME = {-P. Ha} V{ (1.9)

From (1.9) it is obvious that these Liouville operators satisfy (1.7).
Thus they generate an abelian group. The orbits of this group are just
the N dimensional integral surfaces defined by the Hamilton-like
equations of motion

3._%. = {qm Hblﬁ 5 %—EE = *f‘. H),‘S (1.10)

Note that, in general, solving eq. (10) yields each q, as a function
of all the parameters T, . '

No world-lines have appeared so far. But now, if we find the quantities
Xyseeey Xy (non degenerate and transforming like the Qpaeeey qN)
satisfying

Mo, 22t =0 a#b (1.11)

then, an appropriate change of variables permit to identify Xa of

(19.) with the X, of eq. (1.6), and eq. (1.10) is finally equiva-
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lent to (1.1), Since (1.7) is satisfied by construction, the solutions
certainly have the form (1.3) (world lines).
Hint of the proof:

Define
Yo = {%a, Hal (1.12)
Ba = 4 va, Hal (1.13)
" and compute jig% from (1.10) taking tl.ll) into account.

Important remarks

a) Practically H, are given functions of the canonical variables
and the position equations (1.11) have to be solved with respect to
the unknown functions x,(qy,..,Qys pl,..,pN) . '

b) Whereas (1.7) is satisfied by construction, in contrast eq. (1.4)
is generally not valid for % and @ obtained from (1.12) (1.13).

¢) Eq. (1.11) admit infinitely many solutions. Playing with this
arbitrariness permits, in principle, that we choose the positions x
with enough care in order to satisfy (1.4), if we really wish to do
it. Nevertheless, for a pragmatic reason of simplicity, we prefer to
drop the condition (1.4) .
This enlargement of the formalism allows for evolution parameters which
are generally distinct from the proper times. But we gain simplicity
in the construction of models and especially in the solving of eq.
(1.11) .
Fortunately the hamiltonians Ha provide N constants of the motion.

It remains possible to identify their numerical values with aL-mi and

2
this fixes the reparametrization of the world-lines:

Ara 2H
T = \f -;,.:z“ (1.14)

Naturally, we accept only the solutions in which M;z never vanish.

where G = ,44/,,"“_

d) We insist: in the a priori hamiltonian approach the model has
no physical meaning unless a solution of (1.11) is specified.
A unique solution to the position equations can be selected by
requiring that all the x,-q, vanish on some suitable Cauchy surface
(1.) of dimension 7N+l . Of course (Z) nmust not be characteris-
tic (never invariant under the transformations generated by any set
of N-1 vector fields taken among the X, ) .
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Besides, (L) shall be invariant under the Poincaré group and parti-
cle permutations (this insures that solving (1.11) preserves these
symmetries).

For instance, we have suggested 6) to define (Z) by

P.1g.-3.) =0 : (1.15)
7)

dynamics are against the use of center of mass variables, in view of

Some arguments from Mutgze theorem and constraint relativistic
cluster separability. Hence, for N>2 , the above choice is subject
to controversy and might be replaced if necessary. Anyway, previous
to the choice of (L) , the general N-body case faces the algebraic
difficulty of constructing explicitly admissible interactions which
satisfy the commutativity condition (1.8) 8) . As pointed out by F.
Rohrlich 9 , H. Bazdjian 10) and I.T. Todorov 11
tant requirement of separability makes this matter more complicated.

, the very impor-

Moréover, discussing the asymptotic behavior of the potentials in
terms of the canonical variables Qg = 9, can be misleading in so
far as the exact relationship between the q and the positions is
not exhibited. '
However, substantial progress have been made in the constraint forma-
lism. Their possible adaptation to the present formalism could deserve
some interest. But the questions specific of the general case N >2
will not be discussed in details here.

From now on, we shall consider the simple case of two-body systems.

2. Two Body Systems

Each motion of the system is represented by a two-dimensional orbit
in phase space. Its projection onto M4 X M4 is a world-surface i.e.
the cartesian product of two world-lines. This world-surface is the
intrinsic history of the system. But any observer will slice space-
time by a sequence of parallel hyperplanes, The slicing of the WOrld-
lines implies that this observer picks up, from the world-surface, a
one~parameter sequence of couples X] s X5 . This sequence of Xy

X, is the equal-time history associated with this observer. Its
1ift in phase space is a curve drawn on the orbit.

We could consider an arbitrary observer, independent with respect
to the system. This point of view would introduce a constant time-
like direction U% and the equal-time surface of the observer, by

the equation
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u ) (74"11_) =0

In principle it is possible to construct the single~parameter descrip-
tion associated with any such observer, and this should be explicitly
carried out in order to make contact with the work of other authors.

We have preferred to give the single-parameter description associa-
ted with an observer attached to the center-of-mass 2 . In this equal~-
time description the slicing of space~time selects couples Xy 9 Xp
satisfying

P-(x-%) = O (2.1)

Since we have required that Xy 9 X and q4; » 9 respectively coin-
cide on the surface

() P (4.-94.) =0 (2.2)

this Cauchy surface turns out to be also the equal-time surface. Let

us define x = q) = dp, r=%-%, - By integrating the equations of

motion we obtain P-2 in terms of the evolution parameters Ty, Tz .
The points of (Z) satisfy a relation of the form

P 2(z,ta) = O (2.3)
Defining A =T+T, we put eq. (2.3) in the equivalent form
=) =L (2.4)

where $1+€;s.2 , which preserves the democracy of particles. Then,
provided we solve the equations of motion (which yields the evolution
of q; and q, ) a parametric representation of the world-lines (co-
rresponding to the equal-time description) is given by

xo=aq, (0, )
X2 = G2 ({10, L))

without solving the position equations 12 .

Though neither X, , nor X, leaves (Z) invariant, a suitable
combination Y of them does: Y(?-z) vanishes.For instance in the
case of a central-like potential we have

(2.5)
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A .
y=A_X, + =X, (2.6)
?ikq 11?1
Note that the coefficients of this combination have obviously something
to do with the fixations of constraint relativistic dynamics. The vec~-
tor field Y is tangent to the 1lift of the equal-time history. In the

above example
-F":'- —L?;n-!--po
?1.

.}1 = %EEL 1 .._f_o ‘f.o: const.

As proved in details by several suthors 13) the singular lagrangian

14)

approach can be incorporated into this framework. The relation

with constraint dynamics has been analyzed and clarified by L. Lusan-

na 15)

%, Solving Position Equations: Cauchy Surface Versus Asymptotic

Conditions

We decided 2) to select the positions obtained from eq. (1.11)
by the vanishing of %,-q, and %, - qy on (Z) . This boundary
condition is natural and leads to abundant simplifications. It permits
the contact with non-relativistic mechanics through a description in
the center-of-mass frame and seems to be the best choice insofar as
confinement is concerned. (This was our initial motivation).

Alternatively, an asymptotic condition looks reasonable as well
in a different context. As soon as it was recognized that the posit-
ions cannot be canonical, R.N. Hill and E.H. Kerner suggested to fix
their relationship with canonical variables by the requirement that
they become asymptotically canonicaié>when the spatial separation

the ha-

. In the same spirit%
miltonization procedure used by L. Bel and his co-workers 1 rests

between particles goes to infinity
on asymptotic conditions.

When scattering particles are cbnsidered, then asymptotic condit-
ions seem to be more appropriate than the boundary condition on a
Cauchy surface.

Since distinct solutions of (1.11) lead to inequivalent dynamics,
it may be questioned whether the system obtained from equal-time con-
ditions on (2°) has an admissible asymptotic behavior. In particular,

P® and M should coincide with the free-particle form for infi-

(g 18)

nite spatial separations . Reminding that the true natural (not
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canonical!) momenta are not vy, Vo but rather

Atq Atl-
Wa an oo Wes oo, B

with dz:a/d <, &iven by (1.14) it is crucial to check if: For any
"good behaving" potentials

W, +w, — P

X1Aw1+ ’)C;A'Wz_———’ M (3.1)

when
¥ — o

Suitable asymptotic conditions would have implicitly incorporated (3.1).

In contrast, as we start from Cauchy conditions on (2?),, there
is absolutely no evidence that (3.1) is satisfied.

In fact, both choices have their limitations: asymptotic conditions
do not provide easily existence theorems. Moreover, they require that
the interaction is fastly enough decreasing at (spatial) infinity and
do not apply to the harmonic oscillator, Therefore we do not abandon
the principle of equal-time conditions, specified on (Z) . But we
face the problem of checking that the resulting dynamics is not patho-
logic at infinity.

It is not proved but perhaps reasonable to expect that for a suit-
able class of potentials, the dynamics obtained from

(=, "ﬂa)‘z = (’xz‘“’-\a)\i =0 (3.2)

does satisfy (3.1).

The best way to conclude would be explicitly solving the position
equations (1.11) . We present recent investigations about this problem.
For the present time, we shall not discuss the validity of conjecture
(3.1) but simply whether it is true that

('Xq,—q.,.) —_— 0 . (”(z—q-;) —_s O (3.3)
for | — o

Let us consider an unipotential two-body system 19) (Vl = V2 = V)
and assume a central-like interaction of the form



V= F(E?Y (3.4)

Since the relative canonical variables &, 7.} remain in a constant
plane, we try a solution of the form

Xy = gy + f;—-,- (422 - 4a®) (3.5)
%= g BB (83 ) .6

This method was used first in the harmonic case, but now we do not
restrict the dependence of 4& ,1¥~ in their arguments. The position
equations become a partial differential System in the unknown funct-
ions ¢4 v Y -

Practically it is enough to find, for instance, ¢y ’ 1k . Particle
exchange in the formulae will provide the expressions for QHJ 4. -
The equations for ¢, , 4, involve only the Liouville operator X, .
We set

_ Pa P
5 5 , 2= -
Ppa Pp2
hence we compute
X1 94 =4 ; X.6,=1 3.7

Let us provisionally drop the indice 1 in X.cb,’¢. © and deter-
mine %, according to (3.6).

Apply X to (3.6), develop the result on the linearly independent
vectors ¥, '\3 . Defining F* as dF/j 3% we obtain the system

P =- X4 (3.8)
(X*+ 2FY) 4 1+ 2F*p =0 (5.9)

with the initial condition: ¢ and ¢ vanish for ©=0 . Note that
© = 0 is nothing but the equation which defines () . In (3.8)
(3.9) F* depends only on ¥* . In order to render the system more
explicit, we must compute X ¢ and X4 in terms of the derivatives
of ¢ and Y .

Fortunately © satisfies (3.7) and XE" depends only on 2% and
two constants of the motion, viz.



z ~ Ld Ny =~
L%= e‘v"—(@a)" (3.10)
which is non-negative since and % are spacelike, and
~2
N = Y” + 2V (3.11)

which is certainly negative if V +vanishes anywhere (including ).
Indeed we have

X 2* =-2%4 ' (3.12)

and 2.4 can be expressed in terms of ‘52', la, N by elimination
of 'i" . (Doing this we consider 4£% and N as phase space funct-
ions. They are not given numerical values).

Let us introduce the wvariable

z=- 2%

Prom (3.12) we derive

Iz = -2e\ 5 (2V-N) - A2 (3.13)
with & = sign of 'i'-«'a', .
From now on we may require that d> and '4. depend only on
.35, 4% N

Since 4* and N are constants of the motion, only X6 and XZ give
a contribution to X¢ and X} . We have F¥- - dF/dg . From
(3.4) and (3.13) we see that only © , &, N, A* appear explicit-
ly in (3.8) (3.9). Variables other than these ones can be ignored,
and 4" and N behave practically like constants in this problem.

The system (3.8) (3.9) takes immediately the normal form in © , thus
a certain solution exists which vanishes for © = O ., By unicity we
know that it is the one we look for.

Now the point is whether, for a certain class of F , this local
solution can be extended to arbitrarily large values of & and va-
nishes again for & —» o . If this is true, symmetry under particle
exchange provides a similar behavior of ¢, , %4, . Then the posit-

ions determined by (1.11) satisfy

11—4‘ —p O ] 'X,_—q;_ — O
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forZ—» o . As a result Fra ZE and, in phase space, the asymp-
totic region % = ® can be identified with (at least a part of) spat-
ial infinity (¥#%= ® ) . Now the vanishing of the potential for

T —» @ could be interpreted a_posteriori as a true separability
property and (3.3) would be satisfied. Finally in order to check if
the above situation may really occur, we should investigate.the asymp-
totic behavior (in T ) of the solution which vanishes at © = O , for
the system (3.8) (3.9). This task has not been achieved yet. Only a
formal expansion in powers of © has been obtained so far 20 . Its
coefficients vanish for T — ® , provided F is analytic and vanish-
ing at T = @ .

Alternative methods exist for solving position equation. As obser-
ved by Iranzo, Llosa, Marques, Molina, these equations can be solved
whenever the canonical equations of motion can be explicitly integra-
ted 21) . Applying their argument to the case of a potential which
vanish for Z*> R = const. (F is not analytic, but has compact sup-
port) we see easily that Xy = Q and X, = g, are the solutions in
a region E* Acgy » Pz 4 acp (x; and x, are unknown but dif-
ferent in the region where interaction takes place). Recently L. Lusa-
nna has given a tractable exponential formula 22) .

Let us point out that this formula applies with 91 and 92 as
we defined, not only in the harmonic case, but for all central potent-
ials: the quantities X,©, are the same.
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Introduction

We undertake to formulate the second quantization of relativistic
dynamics along the lines of action~at-a-distance theory.

It can be objected that the relativistic theory of direct inter-
actions is not yet sufficiently mature to permit such an attempt.

But the question of particle creation is often raised a priori
against the idea of N-body relativistic dynamics,

For this reason, at least, it is essential to investigate whether
N~body dynamics can be naturally continued by & more general theory
which accounts for particle creation (or anihilation).

We are aware of the mathematical difficulties that this program
may involve in its developments. But it is already important to see .
how a consistent picture is at least conceptually possible.

Crudely speaking the way we suggest consist in quantum field theory
without fields and, in general, without locality. We stress the fact
that second quantization can be conceived independently from the (tech-
nical) concept of local field operators, in a Fock space scheme which
incorporates N-body dynamics (with arbitrary N ) as an intermediate
step.

This view departs manifestly from the conventional habits of Q.F.T.
But it is in agreement with the o0ld ideas of Heisenberg 1 about the
possibility of a descriptipn directly in terms of the scattering oper-
ator without explicit mention of the field.

In Section 1. General properties of N-body dynamics are recalled.

In Section 2. Second quantization is considered in a scheme where
the number of particle is still conserved.

Although not yet realistic, the situation described therein is of
a certain pedagogical interest, especially it countains the case of free
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particles.

In Section 3., We display some principles for breaking the particle
number conservation. At this stage we have constructed no satisfactory
example yet. We have just sketched the main lines of a forthcoming
theory which seems to emerge naturally, irrespectively of the technical
difficulties it may involve.

1. N-Body Quantum Mechanics

Relativistic quantum mechanics is based on covariant wave equations.
In particular, in quantum predictive mechanics these wave equations
look formally like eigenvalue equations. The hamiltonians are operators
and their eigenvalues are supposed to be % of the squared masses.

This simple principle permits to recover a system of N independent
K-Gordon equations in the case of free particles. Coupling terms éppear
when interaction is present e .

But a rigorous statement of this principle requires some care,

Indeed, even for free particles the wave function cannot be in the
Hilbert space L2(EﬁN), whereas the standard theory of operators and
eigenvalues is generally understood as taking place within some Hilbert
space.

Naturally, in the free case at least, the wave function may belongs
to a Hilbert space: The solutions corresponding to given values of the

masses have a well-known scalar product defined through Fourier trans-
form on the N-uple hyperboloid which correspond to these masses. This
structure is related with the usual probabilistic interpretation 3).
But such a Hilbert space is of no use for our purpose: it depends on
the masses and the hamiltonian operators act completely trivially on
it: they reduce to the identity multiplied by the corresponding mass.
Therefore, in so far as one is concerned with having just a mathema-
tical framework describing operators, eigenvectors, eigenvalues and
all that, the natural Hilbert space is L2(284N ). Fortunately the
conventional technique of Hilbert spaces has been suitably enlarged
and completed by the introduction of rigged Hilbert spaces. This con-
cept introduced by Gelfand allows to circumvent the above difficulty 4):
Though the wave function cannot be in L2 , it is generally a tempered
distribution . Thus the largest space in which any function we consider

is supposed to be is well-defined and we deal with the triplet

Je L' c o mm)
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A "time" dependent formalism is possible also. In that case, the
wave equations of the form Klein-Gordon + coupling are replacéd by a
relativistic Schrédinger system involving N evolution parameters.

This time dependent formalism is more general and permits to have
a wave function in L2 if on wishes. We have used it recently to give
(provisionally in L2 ) an axiomatics of scattering .

But, in contradistinction with the point of view of Horwitz and
Rohrlich 6) , our interpretation is that wave~functions in L2 are
off the mass-shell anyway. We do not exclude them completely. Rather
we consider that these idealized objects are conceptually useful, but
we should manage that the true (observable) physical processes involves
only on-shell states.

Taking seriously the wave-equations (Klein-Gordon + coupling) as
eigenvalue equations, we are obliged to consider the space of solut-
ions not as isolated, but as imbedded into the larger space of temper-
ed distributions g/* . Thus the operators we consider may act in ;/*
and not only in the space of solutions.

In other words, to be consistent with the idea that physical states
are eigenstates (i.e. on-shell states) we are lead to construct an
off-shell framework.

A system of N particles is defined by N commuting hamiltonians

Hl"""’HN .

This principle comes out directly by quantization of predictive
relativistic mechanies in its many-time formalism. Commutation is in-
timately related with predictivity conditions and the fact that the
translations in the "time" parameters form an abelian group 7 .

It plays an essential role in the calculations involving the evolut-
ion operator, in particular in scattering theory. :

Tn order to have a consistent theory of eigenstates it is technieal=-
ly essential that the hamiltonians we consider map ~g’ into itself 8).

Any operator A which maps _d into itself will be said hermitian
in the rigged Hilbert space g’c L2C .,d'* when '

<y, A4y = LAy, 4> v (1.1) |

holds VL? and 1|,e-g? .

Then, in the wave-~equations
— 1.2
H’a'llr = Ema"“ (1.2)

1¥ is a generalized eigenvector of Ha for the eigenvalue % mi .
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This situation is realized in particular by the Free particle hamilto-~

nians

‘ ﬁq - lZDa_ (1-5)

But interacting hamiltonians satisfying the above assumption do exist.
Example: If B is unitary and maps ~9 into itself we can take:

He = B H, B! (1.4)

(Of course this simple construction does not garantee cluster separa-
bility).

In view of relationship with the time~dependent formalism we intro-
duce N real parameters 'tl,....,”IN and the evolution operator:

ur“...'t,., = MP v ZTa Hq_ (105)

For the free hamiltonians (1.3) it is easy to check that U mapsgy
into itself. This property holds obviously also when (1.4) is valid.
Whenever it will be necessary we shall assume that U is unitary in
the rigged Hilbert space, i.e. 1is unitary and maps 45 into itself.

Details about the time~dependent formalism, time~dependent wave funct-
ion, and the Schrdinger equation
"‘::';‘z— = Ha..x-(xn-“nxuitu---;th\) (1.6)
rﬂ-

have been displayed elsewhere, with a sketch of a scattering formalism
in L2 . The appearénce of Cl,..., Ty 1is natural by analogy with
the multi-time formalism of predictive mechanics, in the a priori ha-
miltonian approach. Accordingly the evolution parameters are not neces-
sarily the proper times 9 . However they are required to be suffici-
ently equivalent to the proper-times in some asymptotic sense in order
to allow that the asymptotic properties of the system are obtained by
letting all the T,  _go to fw .

As this point come two remarks:

a) The control of this assumption still requires some investigations
even at the classical relativistic level. This problem is provision-

6) , dealing with many
parameters rises, in principle the question of the order of the limits

nally left aside.
b) As recently stressed by Rohrlich and Horwitz

in the definition of the wave operators. As we pointed out >) this
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problem does not appear in the single - potential ( = unipotential)
case. The general case is solved in Ref.[6]).

The time-dependent wave function in (1.6) correspond to the function
q+ of the time independent formalism through the formula:

x = - @

Hence (1.6) is more general than (1.2). Indeed (1.7) implies (1.6)
irrespectively of the validity of (1.2). *
For brevity, the space of the solutlons of (1.2) in ;/ is called

N
the mass-shell space and denoted b J resp. K i
€ ‘ B y My 4y (resp Dyyeeymy) 12
presence of interaction (resp. for free particles)lo>.
As well-known, Kﬂ - is endowed with a mass depending scalar
l’ll’ N

product ( , ) suitable for some probabilistic interpretations and
not to be confused with the scalar product £ , 7 in L2 (quN) 3>.
The gcattering formalism in L2 has been established in complete
analogy with the traditional non-relativistic axioms, except that
Tiseeey Ty replace the absolute time of newtonian mechanics, but
wave functions in I are somehow unphysical, as they are off the
mass shell. Hence; having in mind realistic applications, we extend
the formalism to ,J* as follows:
ASSUMPTION: Let Q4+ be the Moller wave operators, let S be the scat-
tering operator. We require additionally that Sl+, §Z+ s, S, S_:L map
into itself. Then £2¢ and S can be continued to the whole space
,4%*. For instance the extension of S is defined by :

L8y, ¢> = 44 879> e §*, ge ¥

In particular 8¢ now makes sense when -4, is on the free mass=-

shell and Kﬂ m is stable by action of S . This is the main
1900y
point in view of applications to scattering processes 11)

Note that S is unitary in the rigged Hilbert space.
Now assume that, in addition to the above Assumption, the system

has no bound state.
Consider f on the interacting mass-shell. We can write

F = SZ_t} = §Z4.Jv

Then it can be checked that g and h are on the free mass-shell.
The scalar product ( , ) in the free mass shell induces two scalar
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. N
products in Jml""mN .

Indeed we can define:

(‘fd.{:?.)q.: (—'n,, 'l"l) ’ (34.&)_ = (?m%t.)

N
where fl and f2 [ Jml""mN .

These scalar products coincide when S is unitary in the sense of
( , J) . We shall not discuss here the difficult problem of finding
for which interacting potentials the wave-operators actually exist.
Neither shall we display the perturbative procedure for computing the
S operator.

Results in these domains, as well as on the subject of cluster sepa-

rability are available in the constraint formalism 12)

« We expect that
a large part of the results which belong to the constraint approach
can be adapted to predictive mechanics at the price of minor modifica-

tions.

2. Second Quantization with Constant Number of Particles

In the present work (essentially devoted to second quantization)
our philosophy is to pretend that the problems relevant of N-body
dynamics are solved and construct the picture which allows for creat-
ion or annihilation of particles.

According to the spirit of Action at a Distance, interaction is
not described as mediated by a field. Consequently we stand out of
the conventional framework of Quantum Field Theory (Q.F.T.), Intuiti-
vely, direct interactions (although able of maintaining causality)
are generally not local as Q.F.T. is.

What we are doing presently may perhaps be considered as a multi-
local, or non local, generalization of Q.F.T. 13).

(Yet it can be observed that the version of predictive Mechanics sup-
ported by Bel and al, provides a bridge towards local classical field
theories‘l4 .

Anyway, comparison with Q.F.T. is relevant but difficult to carry
out, since the whole formalism of Q.F.T. is based on field operators,
whereas our picture is by no means founded on this concept, The suita-
ble domain for such comparison seems to be axiomatic scattering theory,
in which Q.F.T, is able of by-passing the role of the lagrangians.

Naturally, in the absence of interactions, our dynamics certainly
recovers locality, and our point of view will be equivalent to that
of Q.F.T, though differently formulated.
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In analogy with N-body mechanics we postulate that the physical
states (on the mass-shell states) are selected as eigenvectors of sui-
table operators.

They form a mass-shell space imbedded in a larger space which also
countains off-shell states. Intuitively the states we are going to
consider are superpositions of N-body states with arbitrary N = o,

1,2,.. ® . They are generally off-shell. To put this matter more
precisely, for scalar particles the regular states are assumed to be
terminating sequences of the form:

= (¢, @ .. Yg,0...) (2.1

with ¢e@€, ..., ((NGHP(]RLLN) and { y= O for N>R, R depends
on & . '

Let T" be the space of such sequences Its dual is the space F*coun-
taining the sequences (generally infinite) of the form

@=b(""’0:’q’u sy T ) (2.2)

where 4—Ne ':?*(]RLLN) .

L . . ® o 4N
et 1 be the hilbertian sum @& L°(R )
N=0

with usual conventions

for N =0 ., It turns out that [" is a nuclear subspace of - and we
have a rigged Hilbert space:

P ec¥H®cl* (2.3)

The most general states which will occur are elements of |"*.

The scalar product in L2(124N) induces in ¥ a scalar product
which is also noted by < , » without risk of confusion.

This framework depends neither on the mass, nor on the model of
interaction. (Assuming identical particles the masses are equal, Sym-
metry of the wave functions will be taken into account as lately as
possible in order to avoid complications).

Note that P is mathematically analogous to the Fock space of non
relativistic quantum mechanics, but we give no direct physical meaning

to its scalar product.
Note also that the emergence of (7 is not quite new:
Indeed Wightman’s theory starts from I" , and Wightman functional are
elements of ¥, 12 :
For each such ftnctional, this theory defines equivalence classes
in [? 2nd the space of physical interest is obtained as the correspond-
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16). Our procedure will be

ing factor space (Reconstrdction theorem)
different.

Let us first set up a formulation in which the number of particles
is preserved; although the particles undergo interaction. ,

Assume that we are given an infinite sequence of N-body. systems,
satisfying the requirements mentioned in the above section, including
Poincaré invariance (which requires that the single-particle system
isvfree); If we where to look for a realistic model this would rise
the problem of constructing N-particle interactions when the binary
interaction is specified. This problem is completely relevant of N~
body relativistic mechanics and first quantization. It has been in-
vestigated by several authors but at the classical (rather than quan-
tal) level principally 12?.

As we warned before, in this section the typically N-body questions
are provisionally considered as solved.

Accordingly, for each N = 1,2,..., @, we have the operators Hg
with ag = 1,2,.., N . N

They are hermitian in the rigged Hilbert space

d (&™) ¢ R™) c LHwen)

and commute among themselves, etc...
Having to distinguish N-particle states with different values of
N , we are bound to introduce the following notations:
qu = GV")X;' considered as essentially acting in the N-particle
space 5*(IR L'TN)

D: = 'B:.g: ‘ (no summation) (2.4)

Greck indices are omitted whenever it is possible. Remind that a
depends on N and the notation should exhibit this dependence to
avoid confusion.

For example for a free system we have simply the operators:

HA = TS D: (2.5)

It is natural to consider that the 2Rd

mass shell when

quantized states W are on the

= (bt oy - (2.6)



with 4, eJ) for N1 .

Let Jm be the spdace formed by these states. We reserve the notat-
ion Kg » K, for the free particle case. In the free case the physical
scalar product ( , ) in each Kg induces a scalar product in Km
and the elements in K for which ( , ) < o define a Hilbert

space fﬁm which provides after symmetrization and separation of the

positive frequencies, nothing but the usual Hilbert space of free quan-
tum field theory.
In the interacting case defining such a scalar product in the mass

shell J,  rests on our ability to do the job in each Jg first .
(See Section 1) . '

Let us now prove that most mass shell states can be obtainéd as
generalized eigenvectors of suitable operators.

In view of this consider th defined by the formula

Ao t= lo,. .., 0,HL4,,0,.) (2.7)

for N 21.
Let

aioait---vq\ll"' (2-8)

be a sequence of integers with the constraint:
VN

To this sequence we associate Ma a defined as follows:
2 3.'.

ME = (0,-504,, Wo &,, ..., HY 4,,...) (2.9)

1ca, ¢ N

wich means that the M are linear combinations of the h , namely:

M = b+ bl W (2.10)

Bz, -
Owing to the assumptions made on the Hg ’ we see that the h and M ,
map [ into itself, which allows to speak of eigenvectors in the rig-
ged Hilbert space (2-3).

For each N # 0 , Jg can be characterized as the _generalized
eigenspace common to all the Hg for the eigenvalue %T .

As a result, if ¥ is of the form (2.6) with the additional cond~
ition 4, = 0 which excludes the vacuum component, then % is an

eigenvector of M32 35 . for any sequence of the form (2.8).
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Therefore we are lead to define the exclusive mass-shell space J;
as the set of P in (2.6) which have no vacuum component ( #o =0) .
It is easy to check that J; "is the eigenspace common to all the
M.

Obviously the h and the M altogether commute among themselves,

each one commute with the generators of the Poincaré algebra, with the
number of particles J¥° . Moreover, the hg are transformed into one

another by particle permutations, this property being assumed for the

N 1
l 17)

We interprete M

as mass operators and hN as generators
8y 8zee. ay
of the motion.
Note that even in the free case, a state on the mass-shell is not

an eigenstate of the hg , except if it is also a pure N-particle
state for some N .

In contrast with the first quantization, the mass operators cannot
be considered ag generators of the motion.

This point gets clear when the evolution operator is introduced:
for each N consider N real parameters 'C?,...;rgi...,tﬁ and the

N-particle evolution operator

Uy(tr,”_,tnﬂ defined as in (1.5).

We postulate that the second-guantized evolution operator

Ulr ety ... Th, ...)

acts according to the formula
Ud = (¢, U, ..., u"‘('m ) ' (2.11)

Obviously U is labelled by the infinite sequence

T=t,t%, T2, ... 'c;‘N

which belongs to the additive group

Rx MREx ... ®¥x ...

and U enjoys the Abelian group property

"
L

Ur Up = Ugp Uo

(2.12)
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It turns out that U is factorized
U= (U2 my) (wdud ul) ... (2.13)
where
4‘2 = exp 4 tgik: (No summation) (2.14)

Eq. (2.13), (2.14) involve no rigor problem because, like all the
operators we have considered so far, they act as

A’@-_- (Ao((g, Aglh,. SN An\e",;.-‘

where AN acts on N-body states.
In matrix notation they are block-diagonal.

A complete time depending formalism is possible but will not be
developed here.

Togically the scattering properties follow from the behavior of
Uil EE (where ﬁ'stands for the free particle evolution). But, owed
to the block-diagonal form of U in (2.11) it is clear that provided

the wave operators jlﬂ exist for each N +taking the lim involves
Tw»m

no new problem and the M&ller operator of the second quantized systen
is just given by the formula:

S’-té-‘: ("POlLPJI i‘{z;---:-a-:"h;---) (2'.15)

and the,K scattering operator S is given by a similar formula.
When Assumption I holds for each N , each Kﬂ is stable by s s
so Km is stable by action of S 11)
When Assumption IT holds ¥ , the scalar product ( , ) in
K, induces two mass depending scalar products ( )t in I,

through the mediation of in, out-stétes. These will coincide iff 8

(which is automatically unitary in P with <, > ) is also unitary in
K~ in the semse of ¢ 5 .

To sum up, let us say: In so far as all the N-body interactions
that we consider have a nice behavior, their second quantization yields
a theory where the number of particles is preserved and this theory
enjoys the same nice features.

We may note that:
i) Our _operator h-, M cannot emerge in the conventional approach,
ii) No use is made of field operators and we get rid of the Lagran-



gian formalism.
iii) We have replaced it by a hamiltonian formalism inherited from
multitime predictive mechanics.

In particular the constants of the motion can be characterized as
having vanishing commutators with the generators hg . Besides, in a
time depending scheme, a new state vector |TD» depending on T can
be introduced. It satisfies infinitely many Schrddinger~like equations:

Vhen \T> = 4 W 1T

The special case of free particles deserves some attention for its

N

a *?
M, U, etc. can be explicitly constructed and the mass-shell space

pedagogical value. Indeed, in this case, all the operators Hg s, b

Km is well~known. At this point, the contact with Q.F.T. is easy.

For instance, though field operators are by no means necessary in

the above picture, they can be introduced quite well 18).

3. Second Quantization with Creation and Annihilation

The picture described in the above section still leaves the number
of particles invariant. The block diagonal form of the "hamiltonian”
generators hg is responsible for that.

At least the advantage of this description was to emphasize the
emergence of the operators h and M ,

Now we are going to generalize the scheme in order to permit that
creation (or annihilation) occur.

Naturally we maintain the principle that the exclusive mass~shell
space Jé is the eigenspace common to all the mass operators Ma a .

But we cannot assume anymore that (2.7) and (2.9) are valid. 2 73°°
In other words, the interaction cannot be constructed by giving a se-
quence of N-body systems, in so far as we aim at particle creation.

Therefore we reject the Hg o But it is natural to make the fol-
lowing assumptions: '

a) For each positive integer N +these exist the operators hg and
N
all the possible hN commute among themselves.

We mean [hN, hN’] = 0 including when N # N ,
b) All the possible hN are functionally independent.
¢) They commute with the generators of the Poincaré algebra,

d) They carry " into itself and are hermitianin the rigged Hilbert
space ("c"}‘cl"" .

e) In view of taking into account indiscernability, we should add extra
requirements which rule the behavior of the hg under particle per-
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mutations.

This matter will not be discussed here. Let us say simply: these
extra requirements are devoted to insure that the mass operators
a, aB”' have enough symmetric eigenstates.

f) The (half squared) mass operators M are defined by eg. (2.10) and
the exclusive mass-shell Jﬁ' is the eigenspace common to all the M .
The physical states are then obtained by linear combination with

the vacuum and, of course, symmetrization.
Now the generators h , and therefore the M also, are supposed
to have non vanishing commutators with‘the particle number .

4s a result, N is not constant in the motion, i.e. the eigen-
states of M are not associated with any definite value of N .

These assumptions lead to some comments.

First of all, we insiston commutativity in (a) . This property implies
that the M are constants of the motion and have common eigenvectors.

In (b) we made explicit an assumption which is usually impliecit in
the theory of N-body systems.

Assumption (f) raises the problem of convergence.

Defining the evolution operator by eq. (2.13), (2.14) also rises a
problem of convergence,

If the infinite product (2.13) exists, then U satisfies eq. (2.12)
which permits in principle to start the formulation of a scattering
theory (with a tremendous lot of mathematical rigor problems).

Note that, owing to the difficulty of proving convergence in (2.10),
(2.13), an alternative system of axioms assuming first the existence
of an evolution operator U satisfying eq. (2.12) is more tractable.

But for the present time we consider the assumptions (a) (b) (c¢)
(4) (e) (f) because they exhibit a close analogy with some already
familiar features of N-body hamiltonian dynamics.

We can obviously construct an example of (a) (b) (d) which is not
trivial in the sense that o#" is not conserved:

Let B be any operator unitary in the rigged Hilbert space and such
that [B,N] # 0.
Then (a) (b) (4) hold true for

¥ TN -4
42 =B hi B (3.1)
where ENa are the free particle generators.
In that case it is easy to legitimate the formulas M = B M 1 ,
U=BT B'l where M and U are respectively the mass and evolut-
ion operators for free particles. Then B maps every element of Km
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onto an element of Jﬁ’.

It is not easy to choose B in order to satisfy (c¢) non trivally.

From a constructive point of view, the first serious task will be find~-
ing such an operator.

This question is left for further investigation, but we already under-

stand that the breaking of particle number conservation will involve
creation and annihilation operators in 7§ .

Fortunately the transformation properties of these operators under
Poincaré group are well-known from the general theory of Hilbert spaces.

This could lead us to employ an object similar to the free field
operator of conventional Q.F.T. with respect to its covariance proper-
ties and that we call the "off-shell field operator" 18) .

It is different from its Q.F.T. counterpart because, roughly spea-
king we work in /4 endowed with < , > whereas Q.F.T. stands within
the mass-shell endowed with ( , ) .

We expect that it will be the right ingredient for constructing B as
we wish, since we control its properties under Poincaré transformat-
ions.,.

For the moment we remain with this program to undertake and various
other problems to investigate.

For example: construct hNa by a trick more general than eq. (3.1).

Define the physical scalar product ( , ) on the mass-shell space
etec... ‘

Before we go further it might be neccesary to look back and achieve
to clarify many points in N-body dynamics.

At least we have attempted to open a window on a domain which could
be of great interest in the future.
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It is an honor to be invited here to speak to you about the origins
of a field to which I contributed a number of years ago. It is gratify-
ing to see how it has grown in the intervening years ~-to the point
where a conference such as this can now be held~ a conference which
will undoubtedly stimulate still further interest and growth.

Because I have not been active in relativistic dynamics for almost
ten years, I will speak mostly of things which happened ten or more
years ago, and leave the task of describing more recent developments
to others. Much of what I will cover is described in more detail in
the 1972 reprint collection edited by Edward H, Kerner, entitled "The
Theory of-Action-at-a-Distance in Relativistic Particle Dynamics"l.

I will begin by outlining the various forms of action-at-a-digtance
relativistic dynamics. A more detailed discussion of predictive rela-
tivistic mechanics will follow. Finally, because I always like to pre~
sent at least one thing which is new, I will discuss a simple example,
drawn from electromagnetic theory, for which the predictive point of
view appears to fail.

The action-at-a~distance point of view was predominant from the
time of Newton to the time of Maxwell and Einstein. The time since
Maxwell has, hdwever, been an age of field theory, in which the action~
at-a-distance point of view has been largely ignored. Recent years have
seen a reawakening of action-at-a-distance.

Two distinct threads can be seen in this reawakening. The first
starts with Schwarzschildg, Tetrodéa, and Fokkerq, and runs through
Dirac5 to the electrodynamics of Wheeler and FeynmanG, which is itself
a special case of the later relativistic mechanics of van Dam and
Wigner7’8. This thread is marked by manifest covariant, many-time
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theories. The forces between particles act along light cones, or, in
the case of van Dam and Wigner, through the space~like region between
the past and future 1light cones. Equations of motion are coupled dif-
ferential-difference equations. For Wheeler-Feynman electrodynamics,
at least, this differential-difference structure can be viewed as a
vestige of field theory which has not been removed: it arises because
of the finite time required for the electromagnetic field to propagate
from one particle to another.

The other thread, to which predictive relativistic mechanics belongs,
starts with a 1949 paper of Diracll. It is marked by equations of
motion which are coupled ordinary differential equations. In Dirac’s
instant form -which is the form which has been picked up and developed-
the action-at-a-distance is then instantaneous~ as in ordinary non-
relativistic Newtonian mechanics. The theory is a single-time theory,
rather than a many-time theory.

- I will first review briefly the manifest covariant many-time theories
of Wheeler-Feynman and Van Dam Wigner, and will then discuss predictive
relativistic mechanics in considerably greater detail. Wheeler-Feynman
electrodynamics is characterized by the action principle

[\

_Z mn,C~] (-Jq-l‘~daf"')4h +
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extremum (1

Here a, and bP are the four-vector space-time coordinates of par-
ticles a and b . The equations of motion which follow from this
action principle are

" (k) . -
m, c* A, = ea,z:\ E-f (a) -af )
bxa

where a dot denotes differentiation with respect to proper time. The
antisymmetric electromagnetic field four-tensor F,y b (a) describing
the field at particle a due to particle b is the sum

() 1) 3]
Fd’f () = -.;., [ Fq-f adv @) + FG'P vet (Q.)l (3)

of advanced and retarded contributions; interactions take place along
both past and future light cones, as shown in figure 1 . Thus the
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Figure 1.

Wheeler-Feynman electrodynamics .
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equations of motion have a differential-difference structure: computat-
ion of the force on particle a requires a knowledge of the positions
and velocities of all other particles at both the advanced and retarded
times. The mathematical theory of equations such as this is not in
good shape. For linear differential-difference equations, specificat-
ion of initial data along entire segments of the solution curves is
needed to guarantee existence and uniqueness of solutions. The equat-
ions of motion of Wheeler~Feynman electrodynamics, however, are non-
1inear differential-difference equations. The only rigorous results for
these of which I am aware are a theorem of Driver for two particles
in one d1mens1on9, which shows that Newtonian initial data (specificat-
ion of positions and velocities at one instant of time) can be enough
to guarantee existence and uniqueness. The Van Dam~Wigner mechanics
can be viewed as a generalization of Wheeler-Feynman electrodynamics
in which the force on particle a due to particle b is determined by
the position and velocity of particle b along the entire segment
of particle b’s world line between the past and future light cones.
Conserved quantities in these theories are sums of the usual free-
particle expressions plus an interaction contribution. The conserved
energy momentum four wvector PF' and. the angular momentum-center-of-
mass momentum four tensor MP“ have the forms

P,, =Z. meby 4 P;‘ ‘ €]
My =2 malagd, - 0,60 + My (5)

where P; and M;v are the interaction contributions. Those inter-
actions contributions are expressible as integrals over the world lines;
physically they represent energy-momentum (or angular momentum-center-
of-mass momentum) in transit, which has left one particle but not yet
arrived at another particle. The Pﬁ are expecfed to vanish asympto-
tically when all of the particles are well separated. However, as was
first pointed out°by Van Dam and WignerB, ML, need not vanish asymp-
totically for long-range forces such as those of electrodynamics. The
reason is fairly simple once it has been pointed out. The interaction
energy-momentum Iﬁ falls off like (interparticle distance)™! for
forces which fall off l1like (interparticle distance)-z. When the momen-
tum is multiplied by a distance to form an angular momentum, one has
interaction contributions of the form (interparticle distance)_l x
(distance) which need not -and in general do not- vanish asymptotically.
Interaction contributions M;, which do not vanish asymptotically

for long range forces also appear in single-time instantaneous action-
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at-a-distance versions of relativistic dynamics.

The reconciliation of the half-advanced half-retarded interactions
of Wheeler-Feynman electrodynamics with the usual retarded interactions
plus radiation damping follows from the absorber condition. Dirac5
showed that the radiation damping force on particle a was derivable
from a field F d(a) which could be obtained as the limit as the

p e p(a) (a
source point approaches the field p01nt of ¥2 [ - F ]
pY ret

As a consequence, F adv

LY s o By -
bda

=Z %[ﬁvcdv(a)‘*rkmtw]
1)

b¥o
A m ()
+Z\,: /z[ o ret @ r-;,w(a) (&)
The absorber condition is that the fiehié;(ngiet ~ é?gdv ) vanish;

since the retarded and advanced fields have the same sources, this
field obeys free field equations and hence vanishes for all time if
it and its time derivative vanish at one instant of time. A generali-
zation of Wheeler~Feynman electrodynamics in which the retarded field
minus the advanced field need not vanish has been glven by Rohrllch10

I will now take up the instantaneous action-at-a-distance theories.
Key ideas in this approach, which I will discuss in turn, are (1) a
Hamiltonian formulation in which the Poincaré group is canonically
represented, (2) world line invariance, (3) the often unremarked tacit
assumption that physical coordinates are canonical coordinates, and
(4) the assumption that the given equations of motion hold for all
time, from past infinity to future infinity.

Key idea (1), the requirement of a Hamiltonian formulation, was
motivated by the desire to obtain a-quantum theory via the conventio-
nal route of quantizing a classical Hamiltonian theory. Relativistic
corrections to non-relativistic Hamiltonian theories can be convenient-
1y treated this way. In atomic physics, for example, the non-relati-
vistic problem is already difficult to solve to the desired accuracy;
thus one would like to treat relativistic corrections within the same
Hamiltonian framework so as to take advantage of the hard-won unders-
tanding of the non-relativistic problem. A relativistic Hamiltonian
mechanics, as outlined by Dirsc, consists of a set of ten generators
satisfying the Poisson bracket algebfa of the Poincaré group. If we
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assign the letters H,'ﬁ, 3,'§ to the generators of time translations,
space translations, spatial rotations, and pure Lorentéztransformations,
then generators must satisfy, in dyadic notation with I the identity

dyadic,
[F.P]l=0 (7a)
[(F.Hl=0 (7b)
[3.3)=-1~3 (7¢)
b, 3)= o (7)
[8.3)=-14F (7¢)
[RE1= T3 (79)
[W,K]=-F (70)
(8, R1=-Tw (74)
. 17,R)=-T«¥ (73)

From this point of view, the problem of constructing a relativistic
dynamics 1s seen as a problem of finding a set of generators H, f;
3, f, depending on canonical coordinates and momenta, which satisfy
the Poisson bracket relations (la) - (lj) .

Key idea (2), the notion of world line invariance, applies only to
point parficles. Stated most simply, it is the requirement that obser-
vers in different inertial frames agree as to what are -and what are
not- allowed sets of particle world lines. To make this more explicit
with a concrete example, refer to figure 2 which shows a pair of
world lines for two particles moving in one dimension, Suppose that
the equations of motion are second order ordinary differential equat-
ions giving particle accelerations as functions of positions and ve-
locities, with enough regularity so that specification of Newtonian
initial data -i.e., specification of initial positions and velocities-
is sufficient to guarantee existence and uniqueness of the solution
curves, which are the sets of world lines. Then an observer in frame

S , using space-time coordinates (x,ct) :, would specify initial pos-
itions and velocities at points Po and Qo and obtain the world
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Figure 2 . World line Invariance .

lines shown in figure 2. An observer in frame

87/, using space time

coordinates (x/, ct’) , would specify initial position and velocities

at points

points Po

P
o
and Qé’ be the Lorentz transforms from S to 87 of the

and Qg . Let the initial positions and velocities at



M

the other three ideas. Interaction is possible, but the canonical

particle coordinates.are then not the coordinates of point particles.
The work of Thomas17
to this branch., The other branch gives up the Hamiltonian scheme init-
ially, opting instead for a Newtonian format in which particle accele~-

, of Bakamjian and Thomasls, and of Foldy19 belongs

rations are given as functions of positions and velocities. Douglas
Currie, Edward Kerner, and I started this approach, which was not
manifestly covariant in its original formulation. A Hamiltonian scheme
for these Newtonian equations of motion can be obtained via the Lie-

Konigs theorem, as suggested originally by Kernerao

, by giving up the
requirement that physical positions be canonical, This Hamiltonian
scheme can be made unique up to canonical transformation by imposing
the condition of asymptotic reduction to the usual free-particle form.
Because I was asked to speak about "the origins of predictive rela-
tivistic mechanics", it is perhaps appropriate that I describe how I
became involved in this field. In 1962-63 both Douglas Currie and T
were postdoctoral fellows at Princeton University, where I heard Doug
speak about the zero interaction theorem, which was at that time inter-
preted as proving that instantaneous action-at-a~distance was impossible
in relativistic dynamics. I remember being skeptical of this interpre-
tation even then, based on the following argument: Specification of
initial positions and velocities is sufficient to determine a unique
set of world lines in the non-relativistic limit., If relativistic
corrections. can be calculated by perturbing about the non-relativistic
limit, then initial positions and velocities would be sufficient to.
determine a unique set of world lines in the relativistic case also,
in the form

- -
I, = P (t; initial conditions). (8a)

By differentiation, one would have

T = Wt (8b)
and
a:-' = 'azP: %7- (80)

Equations (8a) and (8b) could in principle be solved for the initial
conditions; if these solutions were inserted in (8c¢), one would have
equations of motion of the form

- e -p . -
a; = £;(F],Toye00 3T V19VoyeeasVp) i=1,2,3,....,n
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positions and velocities at Po and QJ for the solutions found by
the observer in S . Then world line invariance holds if the observer
in 8’/ , using this initial data, obtains world lines which are the
Lorentz transforms of those obtained by the observer in S -i.e., which
are the same as those found in § when drawn in a space-time diagram
such as figure 2. The notion of world line invariance is, of course,
not confined to equations of motion which are ordinary differential
equations- it holds, for example, in the ordinary electrodynamics of
point particles, in Wheeler-Feynman electrodynamics, and in the mecha-
nics of van Dam and Wigner. Al1 that matters is that different obser-
vers obtain sets of world lines which are the same from a physical
point of view.

On the other hand, world line invariance need not hold for particles
which are not point particles. The coordinate of a particle with struc-
ture -which can be thought of as a generalization of the non-relativis-
tic notion of a center of mass~ is some kind of an average over that
structure. Computation of such averages in different Iiorentz frames
need not yield physically identical world lines, as pointed out in
an illuminating discussion by Gordon Fleming1 . Thus lack of world
line invariance is not a fatal flaw ~it merely means that the parti-
cles are not point particles.

The third key idea is very simple -it is the often unremarked tacit
assumption that the physical coordinates of point particles, satisfying
the world line invariance condition; are the canonical coordinates of
the Hamiltonian formulation. The fourth key idea is equally simple =~-the
equations of motion include all forces which act on the particles- the
given equations of motion are the equations of motion for all time. In
the case of.instantaneous action-at-a-distance with point particles,
for which world line invariance must hold, this implies that local ex-
ternal perturbations are not allowed. In figure 2, if I interfere with
the motion of particle 2 at world point Qg , DPredictions made by the
observers in 8§ and 8’ will not in general agree.

I have spelled out all of these key ideas explicitly because there
is a certain incompatibility among them. The famous zero interaction
theorem of Currie, Jordan, and Sudarshan13 , broved originally for 2
particles, extended to 3 particles by Cannon and Jordanl4, to N par-
ticles by Leutwylerls, and clarified in one and two spatial dimensions
by myse1f16, shows that all four of these key ideas can hold only for
a free particle dynamics; at least one of them must be given up if
the particles are to interact. The development splits into two branches
at this point. One branch gives up world line invariance, but maintains
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for an n-particle system -i.e., instantaneous action-at-a-distance! I
recall arguing in this wvein with Currie, but neither of us could convince
the other and it was forgotten until I took my first job as a young
assistant professor at the University of Delaware in the fall of 1964.
There I met Ed Kerner,who was working with action-at-a-distance ideas.
He explained his ideas to me -he was working out a systematic reduction
of Wheeler-Feynman electrodynamics to instantaneous action-at-a~distance
form, order by order in powers of Vca . Kerner’s work was motivated by
the fact that Wheeler-Feynman electrodynamics did not have the self-
energy divergences which have plagued both classical and quantum field
theories; he hoped to obtain a Hamiltonian formulation of classical
mechanics via the Lie~Konigs theorem, which could be quantized via
the usual Poisson bracket to commutator prescription to obtain a quantum
electrodynamics which would at least be free of divergent self-energies.
I remember being struck by the fact that relativity played no role

in his computations. The electrodynamics from which he started was
certainly relativistically invariant; theremust be some vestige of this
invariance in the approximate equations of motion he was deriving. I
puzzled over this for some time; the ultimate result was my first paper
on this subjectal, which appeared in 1967 after a prolonged exchange
with a skeptical referee (the paper was originally submitted in November
of 1965). This paper contained, among other things, my derivation of
what have come to be known as the Currie-Hill conditions. These same
conditions were derived independently by Currie, whose paper22 was sub-
mitted about a month before mine. Because these conditions have played
an important role, I will sketch my original derivation of them for

the special case of two particles in one dimension. In the notation of
Figure 3, Qo and P are simultaneous in the inertial frame S ;

Qé and Po are s1mu1taneous in 8’ . Thus, an observer in S compu-
tes the accelerationat Po in terms of coordinates and velocities at

Qo and P , while an observer in S’/ computes the acceleration at
Po in terms of coordinates and veloéities at Q/ and P . We require
that the two observer’s expressions for the acceleratlon at P , written
as

@)= {[xm-ni@),s® ve)] (9)

in S and as

0 = §,[%/(r) - x @), 0'r) , 0. (8))] (10)
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Figure 3. Instantaneous action-at-a-distance in
different Lorentz frames. =z = tang is
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in 8/ (same fl in both 8 and 8 ), agree when one makes use of
the Lorentz transformation formula for accelerations

0/®) = U-2" [4- 2% ()] - a, (B (11)

to relate the numbers assigned to the acceleration at Po by the two
observers.

This requirement is most easily enforced by imposing it upon the
infinitesimal Lorentz transformation. Inasmuch as it is (from the
viewpoint of group theory) the requirement that the infinitesimal
transformation on the form of the equations of motion vanish, the
group property of the Lorentz transformations then guarantees that it
holds for all proper Lorentz transformations. We now think of 8/ as
moving with respect to S with an infinitesimal velocity z = §@ .
Then x/ = x - t-§¢ and t'= t - x§¢ are the kinematical transforma-
tions; t(Qé) - t(Qo) = —[xl(Po) - xz(Qoﬂ-Sﬁ takes account of the
change in simultaneity. Using these

ye)= = (@) - 1.5

)= %) -t 5 - we){xm)-x@)] g

kinematical world-point shift
Lorentz from Q to Q7
transformation ° °
BR)= R~ (4- 52w -Fp (12)

@)= w@)-U-se)5p - 6,(&)[4®)- %a)- 50

' N
kinematical Lorentz world-point shift
transformation from Qo to Qg

0)(%) = Q,(R) + 3@, (R).w,(P)-5p

If we insert the transformations (12) into (10), expand to first
order in §@ , and demand agreement with (9) to first order, we obtain
the condition

3 vy, = My vb.(a[,/')aru) - ) .(’b&/‘aar,) -

= U-my + x a,) 04, /5w,)

We now use a; = fl and assume that the acceleration of particle 2
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has been written in the instantaneous action-at-a-distance form, a, =
f2(x12,v1,v2) . We then arrive at the differential statements of the
Lorentz invariance of a one-dimensional two-body instantaneous action~

at-a=-distance theory

3"’2!« + 1 ?‘1 =- 'xqz"r-s (9*4 /9‘7&) (13a)

3l + U = %4y (04 )54)) (13b)

where the linear first-order differential operators L and i are
defined by '

L= -x.7; (3/99(.;) + (1-032)-(3/w,) + (14a)
+ (-7 (3/902)

U= - %o 0f5x,) + (A-02)- (3/99,) + (14b)
+ U-02)-(8/0an)

The generalization of these conditions to. N particles and 3 dimen-
sions is straightforward. The conditions are quite general, and apply .
to any relativistic instantaneous action-at-a-distance theory in which
the particles are point particles. Unfortunately they are non-linear,
which makes the task of writing down particular solutions rather dif-
ficult. The general solution of (13)-(14) has, however, been found in
implicit form23. This general solution is characterized by two arbitra-
ry functions £(%,z) and g(vz,;) . With «(%,p,%) and @(s’,q',g)
defined by

«(3.m,8) = {(;.s)—;-%—f) talmy) - Qg-f-z"-;-) (15a)

and
Bls=) = M:;:;) + Qg,(,:l';) (15b)
we have
Xg2 %y-%p = (xp) (164)
% = (%-p3)/ (x+p%) (16b)
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v, = (o(—Poz)/(oHpq) (16¢)

Equations (15)-(16) define a transformation from the physical variables

X1py Vis Vp to new variables %,y,% . The solutions of (13)-(14)
are then
flxg %, %;) = -4 (49 P (arpu) (2 f052) (172)
and
b (%, Wy, %) = 4("\9)3/‘ (°<+p'l)_3' (31%/922) ! (17v)

The equations of motion (17) can actually be integrated to obtain the
world lines in parametric form; the result is

91 (3, -V
% = El:{c‘ + G + éah—‘%%i)- r @ V'[#(%-E)

24(z.%
-%. — ]} (18a)

t= Li¢-c + 3" HED - ™[50
- 5. ’a‘e(‘ 2£.2) 1} (18b)

x= tlavre- ok _g_%'hl;)— - E""-'[%(q.;)
_ 24(1,%)
v 1 (180)
t= 3le-c -3 3},‘21-‘—’— + & (30

- M]} (184)

The constants of the motion are c¢q, ¢y § and T . Equations (18a)
and (18b) give the world line of particle 1 with g as parameter;
similarly (18c) and (18d) give the world line of particle 2 with n
as parameter. The choice of § fixes the Lorentz frame: equating the
expressions (18b) and (18d) for t yields the relation between the
parameters ¥ and m in the form

A%, %) = 8 p(3,9.%) | (19
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Implicit general solutions such as the one found above are, unfor-
tunately; not as useful as explicit solutions. Some explicit closed
form solutions have been found, including the very amusing example

z
-Q,= Qz = ———-—————(01 ~V2)

(20)
2 (W1‘Xz) )

which was discovered independently by Kerner24 and by Currie. The exam-
ple (20) is actually both Galilean and Lorentz invariant! There are no
limits on particle velocities; the velocity of light ¢ does not enter.
.Galilean invariance is obvious; Lorentz invariance can be verified by

showing that (13) and (14) are satisfied, or by writing down the solu-
tions, which are the parabolas,

% = A +Bt + (lce+DD™ (21a)

% = A+Bt - (lck+DN)Y: (21b)

and showing explicitly that the Lorentz transformation carries solu-

tions into (different) solutions: For the world line of particle 1, the
Lorentz transformation

x! +ut!
X, = (223)
V 1= (v/e)?
t = 4+ vxi/et oo
J 1- (vr/c)? (22v)

carries (21a) into
Aot A+ B 4 wx)fer
V4(m Vv i-Wie)*

\/[ (+, + v-x!/c D\
i~ (ﬂk‘ :

which can be solved for x{ to obtain

x! = A+ 't +flet + D | (23)

with
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M-t Clvie) } (242)

' —
A= 14 +8 W) 2[1+3l0)]
B= D+ W) (24b)
4 + B(v/c)
C= [1- e [4Bli0] ¢ (28c)

D= [4-WIP]-[4+8lel0]?{D -
- AC (wic) [4+Bwi)] '+
“’% (vle)*C* [4+Blwic) " } (244)

A similar computation for the world line of particle 2 shows that the
Lorentz transformation

x; +ard
4 - (ufe)*

(25a)

! / z
po EYX/ (25b)

V- (vfe)?

carries (21b) into

x,= A+B'Y - ]t e | (26)

! )

with the same &', B/, ¢/ D', Actﬁally, the dynamics (20) has the

general linear group on x and t (which has the Poincaré group and

the Galilei group as subgroups) as invariance group; it is known that

transformations of the general linear group carry parabolas imto parabolas.
The above example, although it shows that relativistically invariant

instantaneous action-~at-a-distance djnamics is possible, possesses two

unphysical features: it is one dimensional, and it does not exhibit

free particle motion at infinity., Unfortunately it seems very hard

to find physically more realistic examples in explicit closed form.

For electrodynamics, which was always the touchstone for Ed Kerner

and myself, the best that thas been done as far as I know is an ex-

pansion to low order in powers of e2 . The convergence of this series

has not to my knowledge been proven; furthermore truncation of this
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series at some finite order leads to an only approximately relativisti-
cally invariant dynamics., The difficulty arises from the fact that clas-
sical electrodynamics contains only a mass m , a charge e ,‘ and the
velocity of light c¢ . No dimensionless combination of these is possible;
expansions in powers of e2 turn out to be expansions in powers of

the classical electron radius e2/(m02) divided by an interparticle
separation. The closest thing to a closed-form expression for the equat-
ions of motion of instantaneous action-at-a-distance electrodynamics

that I am aware of is the set of coupled integrodifferential equations,

given in my initial paper21

s, Wwhich characterize the equations of motion
for the two particle case.

The fact that we have given up the Hamiltonian formulation becomes
a problem when we want to construct the corresponding quantum theory.
A way around this difficulty was suggested by Kerner?o, who proposed
that the action-at-a-distance dynamics in Newtonian format could be
cast into Hamiltonian form by invoking the Lie-Konigs theorem. The
Currie-Jordan-Sudarshan zero interaction theorem is circumvented by
giving up the idea that physical positions are canonical variables in
the Hamiltonian scheme.

The approach to Hamiltonian dynamics via the Lie-Konigs theorem
applies to any set of second~order differential equations Ei = 32(?&,

16,20

ceeey iﬁ; Vl,...,Vﬁ; t) specifying particle accelerations as functions
of position, velocity, and time. These are first rewritten as the first-
order system

du,; .
_d—?: = Ai(%lﬂll"")"’-zﬂ) i ‘=ADZI---12“ (27)
Here we have in mind that Yo = t, T o= Xy hi =V = TN 0 and

hs y = Fi(TpseeesTys TnNs1seees Top yo) for i=1,..., N . We seek
to derive Egs. (27) from a variational principle of the form

28
s [0 widb+ wldp=0 o
i=1 ’ )

wherein the y;(y,), 1 = l,..., 2N, are to be independently varied.

The Buler equations of (12) take the form
ko

LTy (g fdmg) = 0

j:o

where the matrix r;j is defined by

\j-a.= (3Ui /%) - (3% [3;) (29)
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In order that it be possible to solve the Euler equations for the
derivatives (dy. /dy ) , the 2§ x 2N matrix r'J (with i # 0,

j 4 0) must be non31ngu1ar. Solving these Euler equations for dy /dy
yields the specified equations (27) if the Ui satisfy the dlfferent—
ial conditions

r h: = 0 , t=o 4y ..., kA3 (30)

Here we have allowed 1 = O because the equation for i =0 is a
consequence of the other 2N equations.

Once Eqs. (30) have been solved to yield a set of Ui with non-
singular [3.(1 # 0, j # 0), and hence a variational principle of the
form (28) , a Hamiltonian formulation cangse obtained by solving Pfaff’s

problem to reduce the differential form E[: U.dy; to 2: P, dQ,

(the fact that this can always be done 1s the principal result of Pfaff’s
classic memoir). The Qk and Pk are the canonical coordinates and
momenta, The Hamiltonian is H = —Uo , and must be reexpressed in terms
of the canonical variables Pk ’ Qk obtained by solving Pfaff’s pro-
blem.

Casting the dynamics into Hamiltonian form is, however, not enough.
The transformations of the Poincaré group must be canonical transfor-
mations in that Hamiltonian scheme., Canonically inequivalent Hamilto-
nian formulations lead to inequivalent quantum theories when standard
quantization methods are appliedzs; thus equivalent observers must be
related by canonical transformations if they are to have equivalent
quantum theories. In general only a subgroup of the invariance group
of the differential equations (27) with which we started will be cano-
nically represented., Starting with a dynamics which is invariant under
the Poincaré group does not guarantee that the Poincaré group will be
canonically represented in the Hamiltonian scheme obtained via the
procedure I have just outlined. Thus it is neccesary to look at the
question of invariance in more detail.

Start with infinitesimal transformations

Yoyl = 4o+ €qllug g, %en) (31)

which leave the original differential equations (27) invariant, i.e.
such that both (27) and

d ! 1o ' 2
E%J: hilngy l, oy gay) + OLEY) (32)
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hold for small & . Here the Greek o« indexes the different transfor-
mations. Insert (31) in (32), expand to first order in € , compare
with (27), and demand that the coefficient of € vanish. The result

is the condition

Lah;-Dal + h;Dgj =0 (33)

where

ZQ, Yy, e
and

2N
= 7k Ay, (35)

Equation (33) is the condition that the transformation (31) leave the
differential system (27) invariant. On the other hand, the condition
that the transformation (31) be a canonlcal transformation is that it

changes the differential from :E:: U. dy which appears in the varia-

tional pr1n01p1e (28) by an exact dlfferentlal ~i.e., that

Z LU o, - g2 di = Uiyl ) 4] =
= 84(2,( +O(3z) (36)

for some 1, . Inserting (31) in (36), expanding to first order in
€ , equating coefficients of € on both sides, and demanding that
the result hold for arbitrary dyi yields

LU + :Z::’uj (%;‘/33;) = 952,(/’).&; (37)

as the condition that (31) be a canonical transformation in the Hamil-
tonian scheme. An equivalent condition26, which can be used to test
whether or not a given transformation is canonical, is

Lol * 7;: [ fic (99,5/955) + T (g2lag,) ] =0 (38)

It can be shown that (38) implies (33); however (33) does not imply
(38). Make the definition
2N
o ‘
G = Z %iui -y (39)

v=0
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It can then be shown26 that Gu is a conserved quantity; this is

26

Noether’s theorem in the present context. It can also be shown that

Y t e.[%:q Gk] = ‘%x i'f.b}: ’?plhk) =

= “3'n + (’% -"6".)41& (40)

which holds for i = 0,1,...,2 if ho is defined to be 1. Here the
brackets [.,.] are Poisson brackets. The result (40) shows that Gy
generates the canonical transformation (31) with which it is associated
if 8, = 0 ; 1if 8, # 0 , the formalism compensates for the inability
of the Poisson bracket to transform the time +t = Y, by shifting the
other variables an amount ~-§ g:(dyk/dyo) along the solution curves
of (27).

A deeper understanding of the result (40) can be had by taking a
closer look at the group of invariance transformations of (27), which
group we call G . The subgroup of G which is canonically represented
will be denoted by Gc . There is a subgroup H  of G , generated by
transformations of the form

o> 40 = e + € Bl Yoo Yars) e )

where é— is an arbitrary function, which leaves solution curves inva-
riant -i.e,, which carries a solution s = fj(y°%6 of (27) into
y5 = fj(yé) with the same fjf' It can be shown that H is an
invariant (normal) subgroup of both G and G, . Thus we can decompose
G (or Gc) into cosets relative to H and consider the factor groups
(quotient groups) G/H and Gé/H . Each element of a given coset has
the same effect on a solution curve yj = fj(yo) of (27) . Thus if
we identify physical states with the solution curves (i.e., think of
the physical state as a state sub—specie aeternatis rather than an

instantaneous state), it is the transformations of the factor groups
G/H and GC/H which change the physical state.

Bach coset in the decomposition relative to H contains one and
only one transformation which leaves the time *t = Y, fixed; thus
the transformations which leave +t = Y, fixed provide faithful repre-
sentations of the factor groups G/H and GC/H which change physical
states. In particular, the transformations generated by the usual
Poisson brackets in accordance with (40) provide faithful representa-
tion of the group Gc/H of canonical transformations which change physi-
cal states.
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All of this can be carried through for instantaneous action-at—a-
distance equations which satisfy the Currie~-Hill conditions. But there
is an embarrassment of riches -a great many canonically inequivalent
Hamiltonian formulations can be obtained, For example, multiplying all
of the Ui by the same constant yields a new Hamiltonian formulatioh
canonically inequivalent to the old. Which canonical formulation is then
to be chosen?For a non-dissipative dynamics in which the motion reduces
to free particle motion at large interparticle separations; this ambi-
guity can be resolved (up to canonical transformation) by the demand of
asymptotic reduction to the usual free particle Hamiltonian formula-
tion 27, The argument begins by re-writing the conditions (30) which
determine the Ui in the form

2% ,
DHJ + Z‘ U; (3’1;/9#‘)-) = 'BF/QAJ.J (42)

v=0

where

2%
M= Uk (43)

e T-)

Make the definition
28
ol _ . . .
7 =haly+ 2 U 072y - S0y, (4)

The condition (37) is then Just 1Li = 0 . It is straightforward to
show that .

2N
DE; = 2(D6foy, —gq‘;‘- (34:13g;) (45)

with D and G, given by (35) and (39). Now 1let the Ui , 1# 0
be prescribed on some hypersurface which does not lie along the char-
acteristics of the partial differential operator D (these character-
istics are just the solution curves of (27); D is the substantive
derivative which effects an infinitesimal transformation along these
solution curves), and let [ be prescribed everywhere (Prescribing

" removes the arbitrariness associated with adding a gradient to
the Ui . Different choices for [7 give rise to canonically equivalent
Hamiltonian formulations). Let @E? = 0 on this hypersurface, and
prescribe fly off of the hypersurface by the demand that Gy be a
conserved quantity so that DGg = O . Then (42) propagates the values
of the U, on the hypersurface along the solution curves of (27)
[along the characteristics of D) while (45) propagates the condition
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@f" = 0 for the canonical representation of the transformation (31)
along the solution curves of (27).

The above analysis is applied to relativistic dynamics by taking
the hypersurface to be at infinite interparticle separation where the
particles are free., The Ui are given the forms appropriate to the
usual free particle Hamiltonian formulation, for which the Poincare
group is canonically represented; (42) and (45) then propagate this
canonical formulation into the interacting region. If the particles

are free at t = - and at t = +mo but interact at finite times,

one is of course not entitled to prescribe initial conditions at both

t =-0 and t = +o . This, however, is a problem only for dissipative
systems.

The relation between the original physical particle coordinates and
canonical coordinates is determined by the solution to Pfaff’s problem.
Only in regions where the particles move like free particles can these
be identical; when the particles interact, the canonical coordinate
differs from the physical particle coordinate by an interaction piece.
The same thing happens to constants of the motion, which also acquire
an interaction piece (for the Hamiltonian and the linear momentum,
this is required by a zero-interaction theorem which appears in one
of the van Dam-Wigner papers8); That this should happen is not surpris-
ing when one compares the action-at-a-distance and field theoretic
descriptions of electrodynamic interactions. If one ignores difficulties
with infinite self-interaction, then the Hamiltonian H for the field

theoretic description has, in an obvious notation, the form

H=H + H + AH

particle field (46)

particle~field
where A 1s a coupling constant, One can contemplate pushing the par-
ticle-field coupling to higher order in A via successive canonical
transformations; when this is done, the 0ld canonical particle position
coordinates, differ from the new canonical coordinates by an interac-
tion piece. It would be of considerable interest to see in detail what
relationship, if any, the new particle Hamiltonian obtained via this
process has to the particle Hamiltonian obtained from the Newtonian
format action-at-a-distance theory via the Lie~Konigs theorem.

The discussion of the approach to a Hamiltonian dynamics via the
Lie~Konigs theorem would not be complete without some discussion of
the problems and the prospects. The transition from classical Hamilto-
nian mechanics to quantum mechanics is plagued with ambiguities, such
as operator ordering. It may be that one should start with a quantum



126

theory right away -or that the quantum action-at-a-distance theory
should be obtained via a suitable reduction from quantum field theory
with the classical action~at-a-distance theory serving only as a use-
ful guide- or that qﬁantization methods developed in the years since
Ed Kerner and I worked on these problems will provide the answer. Another
difficulty is the messiness of the results for realistic interactions,
such as those of electrodynamics, which Kerner and I have always regard-
ed as the touchstone. This messiness suggests that either the element
of simplicity in instantaneous action-at-a-distance dynamics of the
kind Kerner and T worked with has not been found, or that the action-
at~a-distance view is not fundamental, but merely a useful computational
tool. On the other hand, the action-at-a-distance viewpoint may provide
insights not otherwise easily available. For example: the fact that
expansion in powers of e“ is really expansion in powers of e2/(m02r)
at the classical level, where r is an interparticle separation, sug-
gests that the piling-up of factors of 1/r in non-relativistic reduc-
tions from quantum electrodynamics may arise from ignoring the role
played by the classical electron radius e2/(m02).

It is always important to know the limitations of a theoretical
point of view. Towards this end I would like now to discuss simple
example; drawn from electrodynamics, for which the predictive point of
view appears to fail at high energies. The example is the special case
of the half-advanced half-retarded two~body problem of classical elec-
trodynamics in which the motion is confined to one dimension because
of initial conditions. The equations of motion are

ma, = % [4—(17;16)7']3/? e[ (B + (Ei)re{-] (472)
mag = & [4-@ule)*T® e[ (Eodu, + (B)eet] (47D)
where
[ |
e 1+ v/
= . 4.
(Ed) et L %2 4 -wle 1o (622
r _ 1
(E1 - ‘ Q ) 4~ (LI-Sb)
adv X‘: 1 +'sz.{¢ dadv
(E) ., =|—=- 4 -l ] (48c)
reb | x: Limle oo
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-e d+v]e
(EL)MV = 2 ' (L"Sd)
x‘z 4 - ""1 /(r ad\’
Here v, and a. are the velocity and acceleration of the ith parti-

cle, X, = Xl(t;) - X2(t2) is difference between the position of
particle 1 at time tl and particle 2 at time t2 « Ei is the elec-
tric field felt by the ith particle; subscripts adv , ret indicate
whether the positions and velocities of the other particle are to be
evaluated at the advanced or retarded time. The particle’s charge and
mass are denoted by e and m ; ¢ 1is the velocity of light.

Consider now the case of symmetric motion, for which vl(t) +

+ vg(t) = 0 ., This problem has been solved numggically at low to
intermediate energies by Anderson and von Baeyer™, and in the high
energy limit by myself. If one plots the distance of closest approach
against energy, it looks something like the sketch in figure 4 . The
iterative procedure used by Anderson and von Baeyer failed to converge
for asymptotic particle velocities greater than about 0.9545 c 3
corresponding to an energy (for one of the particles) of about 3.353 mcg;
the distance of closest approach decreased monotonically up to that
point, and was (Xlg) min = 0.9077 e2/(m02) “at the point where the
iteration would no longer converge. A previously unpublished high-
energy~limit solution of my own has a distance of closest approach
which is exactly e2/(m02) « Thus one has a problem for which the
Newtonian initial data v =V, = o, X - %X =4, X, + X, = anything
is not sufficient to guarantee a unique solution for d 1lying between
0.9077 e2/mc2 and e2/mc2 . On the other hand, a theorem of Driver9
shows that such initial data is sufficient to guarantee existence and
uniqueness of the solution for d sufficiently large.

I will finish nmy lecture by sketching the way in which my high-
energy-limit solution can be obtained. The particle world lines for
this solution are sketched in figure 5 . The feature which makes a
solution possible is the observation that, in the high-energy-limitv
segment ABC of the world line of particle 1 and segment A’ B/ ¢’/ of
the world line of particle 2 are dominated by interactions along one
light cone, while segment CDE of the world line of particle 1 and seg-
ment C’/ D’/ E/ of the world line of particle 2 are dominated by inter-
actions along the other light cone. This can already be seen in the
numerical computations of Anderson and von Baeyer: their figures 2
and 3 show that the acceleration curve develops a double peak as the
energy increases; one peak is due to the advanced interaction while
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the other peak is due to the retarded interaction. The one dimensional
two-body problem with interaction along only one light cone can be
solved exactly, as shown by Robert Rudd and myselfzg; this exact solut-
ion is possible because the equations of motion are differential equat-
ions rather than differential-difference equations when the interaction
occurs along only one light cone. The exact solution with interaction
along the light cone from B to B/ can be used as an approximation
to the segments ABC and A” B” C”; the exact solution with interaction
alorg the light cone from D +to D” can be used as an approximation

to the segments CDE and €/ D’ E/, Matching position and velocity

for these approximations at C and at €’ leads to the conclusion

that the distance of closest approach is ezl(mcz) in the high energy
limit. Half of the turning for particle 1 occurs at B , with the

other half at D .

Now for the details, which make use of the results for the world
lines with interaction along one light cone obtained by Rudd and Hi1129,
hereafter refered to as RH . For simplicity the velocity of light ¢
is 1 . The results from RH are used with m =m, =m and e1ey =

92/2 (since we are dealing with half advanced - half retarded
interactions). The needed expressions for the world lines are given
by RH equations (11)-(15); in the high energy limit these can be ade-
quately approximated by

=1
= 2mBe2E'2(E2 - 4m2) , and

p= E2(E° - 4n°), by = b,
4y = % = (K/E) -0 @)
Yo = % (KE) + % (49b)
%= L et(E-2m?) BT (E% 4wt | 9
bt = 6 E tyz- b7 (B2 4m?) ™ (51a)
bamtao= By (yd- 45) " (B dwt) ™2 (51b)
to-to = 20x%, (52)

The tanh™) terms in RH equations (13)-(15) have been neglected in
obtaining the approximations (49)-(52). These tanh™1 terms, which

are down by a factor (m/E)5 in RH egs. (13) and (14), and by a factor
(m/E)4 in RH eq. (15), contain the Int dependence which is characte-
ristic of coulomb interactions in the asymptotic region, but with the
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Figure 4, Distance of closest approach versus
asymptotic velocity.
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Figure 5. The half advanced half retarded problem
in the high energy limit,
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wrong coefficient since interactions along only one of the light cones
are taken into account.

In order that the world lines be symmetrically placed with respect
to the origin x = t = 0 , demand that the value of x; and x, at
their respective turning points x4 = (K/E) + X, + by and x5, =

= (K/E) - X, - by, Dbe the negatives of one another (this implies

= 0 ) and that the turning times th and tEO be negatives of

one another; this implies )

t 0x and . %, =—9xo

10 ~° 0

To obtain an approximation to the world line of the half-advanced
half retarded problem for t{ < 0 and t,>0 , choose €= -1 and
make the Lorentz transformation

ye Xtoud C s t+ux!
= —————— 5 =
VvV A-wa2 Vi-w*
- -l 2 2\Y2 ‘ . .
where v (ES - 4n%) « The transformed world line of particle

1 (wich gives a high-energy approximation for the first part of the
motion) written in terms of v (instead of E) is

2 ! 2
£+ v, A LA 2
* Xy | = — - %, -l,-1
Vi-w2 v 4 -w2
This can be rewritten in the form

' “"'] AL P
{e=w ‘l+‘lr"1 ° pevt Aswt

which can eagily be shown to be the equation of a hyperbola., The
asymptotes are

Xy = X)L = 0 (54a)
i-v
1-v)V1-
x) 4 2T g - g, LIV (54b)

Asar2 '1+'V'z
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In the high energy limit these simplify to

2
;s?er—n- P -

This is the origin of the claim that the distance of closest approach
in the high energy limit is just the classical charge radius e2/m .
One can also see that the scale of length and time in the region where
the velocity changes rapidly is set by by ¥ 2(e2/m)(m/E)4 in the high
energy limit,

The other half of particle one”s world line, as well as the t<0
and t >0 pieces of particle two”s world line can be approximated with
similar hyperbolas. It is also possible to approximate the whole world
line by the somewhat more complicated analytic form

' -D\1-1* X
Xi- %, /4+v]_ BTN (o Vi-v ].[x;- w o
1-v Rt A+v 1472

tl—v)\l A-yt b ' -v)Va-v2
- % = — Xy - %o

A+wr AV 1+o?

(55)

which, in the high-energy limit, reduces to each of the two approximat-
ing hyperbolas in each of the two regions. This can be seen by writing
it in the form

_ . —
X - 5 [14—0’ fus 27 +',1_7(”( NV1-v
1-v 44wt i+vt

|, (4—17)\'1-'\!'-]
) - B e ]
_ L 1+ [x‘ e B % 14v2 (56)
T e d -V - x (4—1r)\l4-v1] g
4" 1 4 2
i+t A+V

The second (messy) term in the curly bracket on the right hand side
is very small in the high-energy~limit during the tf( 0 rapid velo-
city change. This approximate form has the advantage that it interpo-
lates smoothly between the two hyperbolas in the high-energy limit,
with dxi/dti = 0 when tf = 0 as should be the case.

It appears to be possible to use these insights into the high-
energy behavior as the basis for a numerical exploration of the region
between the point where the Anderson~von Baeyer numerical scheme broke
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down and the high energy limit. I hope that someone will take up the
challenge and do this. It should perhaps be remarked that this unex-
pected appearance of a minimum distance of closest approach appears to
be limited to the half advanced half retarded problem; numerical cal~
culations by Huschilt and BaylisBO show no evidence of this for the
case of purely retarded interactions with radiation damping.

In closing I would like to acknowledge numerous discussions of these
matter with Ed Kerner over the years. I would also like to thank the
Conference organizers, F. Fayos, X. Fustero, J. Gomis, V. Iranzo, J.
ILlosa, J.A. Lobo, F, Marqués, A. Molina, A. Poch, J.M. Pons and J.
Porta for their many hours of work which made this conference pos-
sible,
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SINGULAR LAGRANGIAN FORMALISM IN
PARTICLE DYNAMICS, T .

G. Longhi
Istituto di Fisica Teorica dell’Universitd
Firenze

Istituto Nazionale di Fisica Nucleare
Sezione di Firenze

The problem of singular ILagrangians was studied since the time
of Weierstrass, in the context of the calculus of variations (the so-
called homogeneous case, see for instance H, Rundl). In the more recent
literature, one of the first physicist who studied the problem was
perhaps Dirac™ .

Perhaps the first recongnised physical example where such a problem
appears is that of the electromagnetic field, considered as a dynamical
system with an infinite number of degrees of freedom, where the cano-
nical momenta conjugated to the scalar potential vanish, so providing
a first example of a set of canonical constraints.

Another simple example is the Lagrangian of a scalar massive relati-
vistic particle, written in a manfiest invariant form5 , of which a
great number of models are natural generalizations4 .

A number of papers could be quoted, in which this problem is in
one or in another way discussed, anyway its Systematic study from
the point of view of the physical applications and of the quantum
theory is due again to Dirac, who developed it in the well known series
of papers, and subsequently reorganized in the lessons at the Yeshiva
University” . ’

Let me show in a simple way how the interest in singular lagrangians
arises in particle mechanics, The action for a single material point

x¥ :
S s _.jd/l ' JA = v dx"‘dxﬁ_ (1>
x!

(signature (+, --=) ), ,
x* being the set of lagrangian coordinates which determines the

is



136

event in Minkowski space at which the point is observed. It is suppos-
ed that the observation is made in an inertial reference frame, and
x% = t (¢ = 1) is the time measured in this frame. In (1) x’ and
x” are given events and the integral is on the possible paths from
x/ to x¥ .
A possible generalization to two interacting points 156’7
xy, %3 .
g= */ [\l U,r» al'x,‘ + VU (r)dx? ] (2
x:) *"
where rt= xf‘- xé‘ , and the integral is extended to paths from
(x{ , xé) to (x{’, x5§ in the configuration space (xl,xz) .
From these examples we may say that we are interested in the study

of actions of the form
‘._n 3

S=| Llix;, dx) ¢=4...,m (3)
x’
where L is homogeneous of first degree in the second argument,
A problem of this kind could admit a geometrical interpretation,
namely the problem to find geodesic in a space where the distance is
defined by

da= L(x,dx) (4)

This would define a Finsler space1 if some conditions on I were
met: homogeneity of first degree in dx ; positivity and non singular-
ity of the matrix tensor 313 defined as

- L oL
t4 = T 3703 5

where a parameter T was introduced for convenience:

d

X=32 5% (e)

Now in the example given in (1) ‘g is indeed not singular, but
in the case of the example given in (2) g is singular. This means
that in general equation (4) doesn’t define a Finsler space as usually
defined (see especially the second reference quoted in1 ).

The choice of a parameter T (the paths on which the integral in
equation (3) is performed are lines in total configuration space) is
useful , but not strictly necessary. If this is done we may define a
singular Lagrangian L(x,x) :
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cll

s = L[X.Q’() 'dt (7)
c! .

where x{ =x (), %"= ox( T") . L will be homogeneous
of first degree in ii . Clearly we may change at will the parameter
T . The action doesn’t depend on T ; it is a functional of xi(1:)
and a function of x{ and x{”.

The homogeneity of I implies that the canonical hamiltonian

vanishes:
H = ;7.(; - = EL‘. xX: - = (8)
| C P L- (}x-.' . L O .
and by differentiating on ij
QL
X, =
yiax; =0 (9
? 21,

that is the hessian matrix l ‘ has at least one eigenvector

corresponding to a null eigenvalue. This shows that a parameter inva-
riant lagrangian is a particular case of a degenerate lagrangian, where
for a degenerate lagrangian it is understood a lagrangian such that
2L
'}x;')x5

It is worthwhile to observe that any lagrangian can be promoted

=0 . (10)

to a singular lagrangian in a space of coordinates with one more dimen-
sion (for a general statement see again Rund? ).

Degenerate lagrangians are discussed in detail for instance by
Shanmugadhasan8 and by Sudarshan and Mukunda9 .

The property (10) has a lot of deep consequences. First of all on
the equations of motion

d(m_ el

dt\ax;] T o= (11)
which can be written
G T S | M . I
PRt B VR, o TR (12)

by performing explicitly the derivative, and by taking into account
the independence on T of I ; the r.h.s. of equations (12) is a
function of x4 and ii , whereas the "accelerations" E& are present
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only in the 1.h.s., where they appear explicitly. Now, due to (10),
only some of the §; can be calculated from (12), By linearly combin-
ing the n equations (12) we can find (at most) n-r relations invol-
ving x5 and ii only, where r is the rank of the-Hessian matrix:
By %, %)=0 A= AL, ... £m-r (13)
These are called lagrangian constraints, they put restrictions on the
initial conditioms. '
By differentiating in T these equations, and using again the
equations of motion (12), we can eventually find other relations of
the kind of the B, , and so on. This procedure can be found in all
details in references 8) and 9) . It turns out at the end that a certain
number p of canonical constraints may appear

Qo (o %) =0 . pehop (14)

where the momenta p; are defined in the usual way

oL
f" gi‘

(15).

(but due to eq. (10) these cannot be inverted in terms of the éi ),
and some of the "velocities" ii will remain undetermined. Among the
constraints (14) are present the so called primary constraints, which
follow simply from the definition of t?e D; » equation (15), by éli-
minating between these equations the X5 these are identities in
the space (xi, ii) and are in number n~-r ., It will be in general
p>2n-r.

The constraints sz(p,x) = 0 can be classified in constraints
of first and second class according to Dirac5 . First class constraints
are such that their Poisson brackets ( {xi, pj} = § 1ij ) with all
the other constraints are zero as a consequence of the vanishing of
the Szf(p,x) (of all the £, in general), or, as is usually referred
to, they have weakly vanishing Poisson brackets with the other cons-
traints. Otherwise they are second class constraints.

Usually in particle mechanics second class constraints appear
(for more than 1 particle of coUrée), but in field theory the situat-
ion can be different: the relativistic string model and the electro-
magnetic field are two examples of models with an infinite number of
first class constraints.

In the case of particle mechanics the situation as seen from the
lagrangian point of view seems to be very different from that of Droz-
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Vincent10 Todorov11 12

class constraints. Nevertheless, as we will see on a worked example,

and Komar~~, based on a set of postulated first
there is a sort of correspondence.

The sequel of this lecture will be devoted to the analysis of the
correspondence and to the advanfages'(and disadvantages) of the lagran-
gian approach,

To make things as clear as possible I find it convenient to discuss
one simple and workable model, namely the two-body lagrangian model
firstly proposed by Kamimura and Shimizu6 and later discussed by Domi-
nici et al’ . This model has the action given by equation (2), where
the potentials U; (i=1,2) are given by

Uy = U, = m*=V(re (16)

(we will consider the case of equal masses for simplicity).
The parametric lagrangian is ‘

L% = - '\/fm"'—V(r_') ((77,‘ + i:) (17)

where xf” = x{'(t ] are the lagrangian coordinates of the two cons-
tituents, i = 1,2 , which are supposed to specify the events of the
two particles in a given inertial frame.

By defining the conjugated momenta as

k_ DL (18)
'f“ rb*ip

where the minus sign is due to the metric signature, we get two primary

constraints

Q, = r,’--m;‘ + Vi
ﬂ’_ =

. (19)
f:" my+Viry)
and a secondary constraint :
X= V). (p.r) (20)

where

ph= bl b (21)
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is the total momentum of the system.

It is shown in ref. 7) that, apart from a reparametrization invarian-
ce in T , the constraints (19) and (20) determine a family of covariant
word-lines, parametrized by twelve initial data specified at equal T ;
this means that the initial data must be given with a specified time
delay.

On the other hand the Droz-Vincent-Todorov-Komar approach to the

10,11,12

same problem would start with two first class constraints,

which are the following

Ky = pr-mi+V(r®)

(22)
K'z_ = f‘:"m‘: +T(£'—)

where

" .
cr= el (_";P.z_f_ (23)
which have the property
Ax, ki =0 (21)

It is known that the model (22) doesn’t specify a unique set of
world-lines12’15. In order to have that we need the addition of one

14 , which can as well be the constraint (20)

gauge~fixing constraint
(the constraint which fixes the parameter T should be eventually added
in both models). Kl and K2 by themselves only specify a set of
world-sheets.

We must observe that here we are identifying the phase-space coor-
dinates of the model (22) with those of the lagrangian model. This is
necessary in order to do a comparison. In this respect we must not
forget that the configuration space of the lagrangian model was iden-
tified as the physical one. A different situation appears in the appro-
ach of Droz-Vincentl” , where the identification of the physical coor-
dinates is made a posteriori.

We may verify explicitly that the constraints Kl and K2 do not
gpecify world-lines, by the use of the explicit form of the Hamilton-
Jacobi’s function, which in the case of model (22) is known to exist,
due to the property (24).

I will give here only the result for the case of harmonic potential

V(re) = or ; the calculation of the Hamilton-Jacobi’s function
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follows the classical procedure based on integrable systems, which will
be discussed in the third lecture.
The H-J function 8 = S(x,r) , defined by

d9 =- F"’c\fx" - q_“drr, (25)

where the collective canonical coordinates PyX,q and r are defined

as:

X= §lx4%) r= Xp— Ky

= Pt v 9= Tlhepo (26)

is given, for the model (22) with V(r2) = cr2 , by
--ch)a—-—-—Z[\/—f Ve et +
We as * (27)
+E€,. amm(‘(c_f,./\/_é_;)]
where
“ ,
= ea(P) I"r._ , 1=4,2,3 (28)

The E;YP) being the polarization four vectors for a massive particle
defined by Weinberg16, and claculated in the second paper of ref. 7).
In eq. (27) kI is such that

kb= M® = 4m"~+2; €x (29)

-
and k , ea are six arbitrary constants of integration.
It can be verified that 8 1is solution (a complete integral of
the two equations )

P*+4g9* L 4mP - 4t =0 }
(Pg) =0

that is of equations K1 =0, K2‘= O expressed in terms of the col-
lective coordinates (26), if these equations are thought as partial

(30)

differential equations (Hamilton-Jacobi’s equations) in S through

28 28
pr=- Bx,. ' ?r\=‘5“=;,‘ G
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The solutions of the equations of motion can be got from S as usual,
by differentiating S with respect to the six constants €, and *
and by putting the results equal to new six constants.

The solution so obtained is in a non parametric form, suitable for
our discussion:

L]

28 k.
,ST(—C=J\.;=- K ’><.+¢<.--\-Z_:_\/ga_c_r_-;-_ %_—:_-A_ (32)
where - |
f)fa = kn.f.: - S;\i. (EE) _i(g)“ - k)ki ) (33)
K, Mko+ M) M* kKo (ko+ M)
and where
= (kr) (34)
k= VRBME =\ K st + 4 Z €n (35)

The other set of solutions is

2 o2ty e
e T M TR W & e, V6o "o M 36

The two setsof equations (32) and (36) should be solved in terms
of say ¥ and T, so giving two solutions of the form

= %c (%o, 7o; ke, 8:)

(i=1,2,3) , (37)
X = ?; (%, r; ki e:)

which represent a 2-dimensional surface, for any given set of the 12

integration constants k E£. , in the configuration space.

7 9

It can be verified th;t it %oesn’t happen that ?& and §é are
function of xg and xg separately; it follows that this surface
is not the product of two curves or world-lines in the two Minkowski
spaces M1 and M2 of the two particles, but when projected on the
two subspaces M1 and M2 it gives world-sheets.

It is not easy to verify this fact explicitely, since it is not
Ei
and §% « But it would be sufficient to find a particular case where
it happens for the effectiveness of the general statement. A particular
case is the choice of the rest frame of ph, 3 = 0 ., Since from the

equations (32) and (3%6) and (31) we get pMt = constants = k* , we have

possible to solve in closed form the equations (32) and (36) in
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to choose kK =0 . Now the equations (32) and (36) are easily solved
in ;; , (i=1,2) ; we get

Ky = gt %‘ (e-t) o &, —_’i'\/—%— sin §;

(38)
Ky = ,41.;+ J_-H-e—‘ ($2-t) “’4’6 "'i,"{—%: /"‘Mb‘
where
_ t+t.
4)'; _ &F (a‘:+ 1M ) _(39)
and

’ti'-: «40 ' 'é?. = x:

The conclusion is that this model doesn’t give world-lines, at least
until we mantain the identification of the configuration space with
the physical space.

Another possibility is left open, that is to look for new physical
coordinates such that the surface defined by ki = 0 , corresponding
to some choice of the integration constants, will appear to be the
product of two curves in the new physical subspace M1 and M2 . This
different interpretation would determine the Droz~Vincent physical
positions15 .

Inasmuch we have chosen the physical coordinates as I did, the only
way to have world-lines instead of world~sheets is to put a restrict-
ion (gauge-fixing constraints) on the solutions (37). If we choose such
a restriction to be '

r=(kr)=0 (40)
that is the same constraint given as secondary constraint by the lagran-
gian model, we get exactly the same s6lutions we had got by starting

from the (19) plus (20) (with V' # O ). That is, putting T = O in
the equations (32) and (36) , we get

L R A L=t LS
° A

M (ko+M).
—_ 2 ! Ic r
A== = Xo+ Yo arc pin = (42)

together with



(7]

K. k-
G = =
e (43)

ul

7

. . - - ..
These can be easily solved in r and x , giving

I; ka
o fE b o
Yo = -:T Z )r [4r(a,.+?2‘-:]

—

where ki is the new constant:
=h; - Z\:E—: k;{?; '/";"-[3‘? (“c-“a)] (45)

The solution (44) depends on x  only, besides the twelve cons-
tants Ei s K5 o hi » 85 and a time correlation appeared between
r, and x, , that is between t, and %, . This is exactly the
solution which could be got from the lagrangian equations of motion,
once we had eliminated the parameter T in terms of X, . The situation
is sketched in Fig. 1, where the two world-sheets are indicated with

671 and 672 and the two world lines, determined with the condition
T=0 , with Y, and 1> -
We could at this point reconstruct a 2-dimensional surface in the
total configuration space as the product of '(1 and fg . On this
new surface the condtion ¥ = (p.r) = O will hold only on the line
Y, of which [; and Y, are the projections on M, and M,
(see Fig. 1). Any line on this surface will give the same world-lines

Yl and "2 , and since it is a 2-dimensional surface, points on
it can be parametrized with two independent parameters fi and ‘52 ’
which can be used to give an independent parametrization for the two
world-lines.

From this point of view we can make contact with the predictive
point of viewl7 . Indeed from the world-lines so obtained, which are
now parametrized at will, we may look for forces which are defined to
act at the same time in the chosen frame (and in any reference frame).
A procedure which is possible in principle is the following: we may
take the equations defining the two world-lines at the same t , by
eliminating T, and 12 in terms of t , and differentiate these
twice in t . We can eliminate the integration constants in order to
get the instantaneons forces. This is a classical argument in favor of
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the existence of action-at-a-distance forces.

Let me now summarize the situation as comes out from the analysis
of this particular model. The Todorov-~Komar approachll’12
to the two-body problem, gives the same results as the lagrangian model,
if we select between all possible gauge-fixing constraints (those not

T dependent) the same constraint which arises from the lagrangian

, when applied

"equations of motion. Alternatively we can take the general solution

of the two equations K; =0 (understood as Hamilton-Jacobi’s equation),
and look for new physical coordinates, in terms of which the 2-dimen-
sional integral surface become product of world-lines.

In any case it results that the lagrangian approach, starting from
a set of physical coordinates, gives a complete dynamical scheme, in
the sense that it specifies not only the world-lines, but also the
time correlation which is a necessary element of the law of force.

At this point we can try to list some of the advantages and some
of the disadvantages of the lagrangian approach.

One of the first advantages is that the requirements of relativis-
tic invariance, and of other kind of invariance, is more easily carried
out in the lagrangian approach. Even the requirement of separability
(or cluster decomposition) seems to be more clearly accomplished.
Moreover, an interaction with an external field is more easily introduc-
ed in a lagrangian, where it can be more clear the way it can be
coupled to the particle coordinates, in order to preserve some sym=-
metry.

On the other hand it can be very difficult to find a lagrangian with
a given set of primary and secondary constraints. Given the primary
constraints it can be impossible, due to algebraic difficulties, to
determine the corresponding lagrangian. And more, there will be ambigui-
ties in the choice of a lagrangian, since the classification of a set
of constraints in primary and secondary ones is arbitrary, and it is
of small if not null physical meaning5 .

As an illustration of this situation let me again take the example
of the two-body system. I know three lagrangians which give rise to
the set of constraints (in the case of equal masses):

P+ 49 + ULy =0 (46)
kq) =0 : 47)

pv)=0 (48)
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The first in chronological order is that proposed by Kalb and Van
Alstine™® and by Takabaya5119

L=- \/— u(rz)[*‘— (3\;;_1" + G‘r‘] (49)

2

which gives the constraints (46) and (48) as primary and (47) as se-
condary constraint.

The second is that proposed by Kamimura and Shimizu6 , equation (17),
which gives the constraints (46) and (47) as primary and (48) as secon-
dary constraint.

Finally a lagrangian proposed by Gomis, Lobo and Pons20 y given by

L='é‘\)'ﬂ(r‘)'[(\]—°§ +@)+ Er_:)"z]‘l,,\ | (50)

gives all the constraints (46), (47) and (48) as primary constraints.

In the next lecture we will see what the lagrangian approach can sug-

gest on the N-body problem, where the main difficulty is the realizat-
.ion of the separability or cluster decomposition property.
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In this lecture I will give a short account of the various approaches
to the N-body problem (N>2) , and I will discuss the problem posed
by the requirement of separability (I will consider the spinless case
only).

The requirement of separability, or cluster decomposition property,
is a well known difficulty encountered in the study of N-bodies in
direct interaction. The necessity of requiring it was first raised on
by Foldy1 , and investigated by several authors2 .

Several model satisfying this requirement have been studied, start-
ing from different points of view. I will not give here a complete
review; recent reviews on this subject can be found in references 3}4)
and 5) .

Separability, or cluster decomposition property, will be here under-
stood in the following meaning: when a system of N interacting par-
ticles breaks into two or more dynamically independent clusters, be-
cause of a finite range character of the interactions, or because there
is a large space-like distance between them and the mutual interactions
vanish in this 1limit, the set of constraints must as well break into
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two or more dynamically independent clusters, because of a finite range
character of the interactions, or because there is a large space-~like v
distance between them and the mutual interactions vanish in this limit,
the set of constraints must as well break into two or more correspond-
ing subgroups, each subgroup describing the separate dynamics of each
cluster of particles.

An important consequence of the requirement of separability is the
necessity of many-body forces in the direct interaction dynamics of
many—bodies2 . This was shown particularly in references 6), 7) and

8) .

I will give here a short account of some approach to the problem.

A first group of models starts with the search of N first class
constraints with the cluster decomposition property. This kind of ap-
proach has been initiated by TodorovB’9 . Komar1 and Droz—Vincentll.
Generally speaking, in this kind of approach it 1s neccessary to specify
a set of gauge-fixing constraints (N-1) in order to have a definite
dynamics (see lecture Ith. for a discussion of this point, and referen-
ces quoted therein).

A different approach with both Ith and IIth class constraints has
been followed by Gomis et al.12
of all the distances between the particles with respect to the total

, where a constraint of transversality

conserved momentum exists, which guarantees the space-like character

of the interparticle distances. Due to these constraints the model is
not separable according to our definition. Nevertheless the model is
predictive13 , and it should allow a reinterpretation in terms of
instantaneous forces. From this point of view the problem of separabi-
1ity disappears, since all that is required is that the world-lines

will become straight-lines for large space-like distance, and this is
what happens in the model. It exists however the difficulty to attribute
a well defined rest mass to each separated free particle.

Other models with a universal potential, which satisfy particular
kinds of separability were proposed14 and” . In this last work a model
is proposed which is separable in the case of finite range forces.

In this talk I want to discuss a different model, based on both Ith
and ITth class constraints, which comes as a suggestion from a lagran-
gian, which is a natural generalization of the lagrangian for two-
bodies proposed in reference 15), 16).

As we have said the ngorov—Komar approach postulates a set of N
first class constraints. This set of constraints is supplemented by a
set of N gauge constraints, which are necessary in order to eliminate
the N temporal coordinates.
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On the other hand a singular lagrangian should specify 2N-1 cons-
traints, that is N mass constraints and the N-1 +time correlations
necessary in order to specify the dynamics (that is the times at which
the forces must be calculated), but not the constraint which specify
.the parameter T (since the lagrangian itself must be homogeneous of
the first degree in the ii , that is parameter invariant).

To study the N-body problem I will start again from the lagrangian

formulation of the two-body problem15)16)

L=- \I[M"—'V(ﬂ)] x5 - \/[M"—'V'cr')] Xz (1)

(signature : +,--=)
where for simplicity I have chosen equal masses and a unique form of
the potential V ; rt-= xlr‘— sz .

This parameter invariant lagrangian gives rise to two mass cons-
traints (which are primary constraints, that is identities at the la-
grangian level):

L= pr-mi+V(r2)

(2
Q,= f,'f -mf + e

(Sazdjian8 has shown that there exists a canonical transformation,

by which we may get one and the same potential V = V12 = V21 , start-
ing from two mass constraints with different potentials, V12 £ Voq s
but this last potential would depend in a complicated way on the momen-

ta, or conversely if they depend on r2 only, the potential V = V12

V21 would depend on p; ). Besides, the lagrangian equations of
motion imply two lagrangian constraints, one of which is a canonical
constraint

V). (4 rhe,¥) =0 (3)

the other being a relation between two undetermined velocities.

Thus this lagrangian selects in a natural way a particular "dynami-
cal" model between the class of models described by two mass constraints
of the kind of Todorov-Komar; in this case, two first class constraints
are easily recovered from (2), by substituting C (the transverse
part to Py + pp of ¢ ) in place of r in the potential V , This
will give two other mass constraints equivalent to that given in eq.
(2), taking into account eq. (3), when V’/ £ 0O .

A1l T have said require an important specification. That is what
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is the physical space for the coordinates. It was tacitly assumed from
the beginning that the space of the lagrangian coordinates is the phy-
sical space, in a given inertial frame. Summarizing the situation re-
garding the two~body problem, we see that the set of three second class
constraints (from which we may always select one first class and two
second class constraints) given by equation (2) and (3) is equivalent
to two Todorov-Komar mass constraints and a gauge-fixing constraint
which selects the dynamics and which is separable.

This is a general feature of the singular lagrangian approach. T
will not discuss in more details all the problems concerning the gauge-
fixing constraints and the world-line conditions, since this was discus-
sed in detail by several authors, and it is the content of a talk by
Lusanna at this congress.

The study of the two-body problem suggest that we may try to gene-
ralize the lagrangian (1) to N-bodies. Let me start with the three-
body case.

A possible generalization of (1) to the three-body case is the

followingl7‘

3

L'—'—Z \}u;'*e‘ . | (%)

v=d

where we will do the simplifying assumption of equal masses, with

Uy = m*- V‘,_(r,:’ = Vi (ng)
uz = wmt- -Vu (\'-'a.l") - Vu(rz;') (5)

ua = m*- V;.(fu‘) - Vu(r;%)

where
R x®oxf (6)

and where we have chosen a simple form of the potentials. We assume
also

Vy =V, )

The primary constraints that follow from (4) and (5) are

Q= pr-m*+ "V +V,
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Ra.= b -m>+ Vyy + Va3 (8)

51,

pz-mr+ Vi + 7V,

If we analyse the equations of motion given by this lagrangian, we
find that two lagrangian constraints must hold

] '-V;,’s(ri;.) ( P24 Pa,y G.‘s) = v,,-Vs',((gf)-(p#?“ GA) = (9)

=% V;'z (ni)'( Pat+ Pz, nlz)

where 7 .
v; =\/ U x2

By differentiating in T and using the equations of motion, and
iterating this procedure, we never find some other constraint, except
for new relations involving the derivatives of the WE (that is new
lagrangian constraints, but which do not imply new canonical constra-
ints, since we cannot eliminate the Vi in terms of the momenta p; D).

The relations (9) determine the ratios of the i » and give no
canonical secondary constraints at all.

From the point of view of Dirac’s theory of constraints this co~
rresponds to one first class constraint and two second class constra-

13 . We would have five cons-

ints. So this model cannot be predictive
traints in a lagrangian approach: 1 first class and 4 second class,

or, equivalently, in the Todorov-Komar approach, 3 first class cons-
traints and 2 gauge-fixing conditions T -independent.

There is an exception to this situation: when one interaction bet-
ween two particles is absent, that is when say the potential V13 is
absent in eq. (5) . The corresponding configuration of the system would
be that of an open chain, instead of a triangle. This case was studied
in detail by Kamimura18 .

But one property of the set (8) and (9) is interesting: it is the
separability property, which is satisfied. We see by inspection that
all possible clusters can be separated with the correct constraints,
in a c¢yclic way. Each cluster will have the correct constraints for
a two particle system or for a free particle, where the two particle
system is described by the two body lagrangian (1) . This stems from
the structure of the lagrangian (%), which is in itself separable.

This cluster decomposition property allows for possible configurat-
ions with two particles separated by a time-like distance, but be-
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longing ta the same cluster, like the chain configurations of the
lagrangian model of reference18 . This is not in contradiction with
the definition of separability given in this lecture (see the appendix
for the analysis of a particularly interesting case).

As an example of a cluster decomposition assume that the third
particle goes to an .infinite space-like distance from the others, and

assume slso that V. and V32 go to zero with their derivatives.
We get from eq. (8) and (9)
= 2 _ a2
Q= p*-m +V, )

Q.= 1?:" m* 4 -v;.l

Q,= p2-m ? (10)

B = Vi ) (perpe, Ge)

which is the set of constraints we expected for a two-body cluster
(particles 1 and 2) and a free particle (particle 3).

So the lagrangian (4) doesn’t give a correct set of constraints,
but gives a suggestion of how to achieve the cluster decomposition
property.

We may take advantage'of that and postulate the following set of
constraints for a separable model of three particles:

L,4,3
Q= r}-m’w Z -V:a ("1-;' ;oe=423 .V;J=V‘a—l (11)
it .
and '

3

! . ,

B = J:Z4 V;i (*}32)'(!":'*?3'. "cé) (12)

where in this last definition the subscript i may even take the value
3, since in this case eq. (12) gives a constraint already implied by
B1 and 32 .

From the point of view of the Todorov-Komar approach, the model
(11), (12) can be reinterpreted in terms of three first class (among
themselves) constraints and two scalar gauge~-fixing conditions. These
first class constraints do necessarily exist, at least locally. This
should be clear from a general theorem that states that it is always
possible (at least locally) to find a canonical transformation to a
new set of variables, such that part of them are equivalent to the
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constraints (in the sense that they locally define the same surface
in the phase space); in this case three momenta, say, corresponding
to the three first class constraints, and two coordinates, conjugated
to two of these three momenta.

Contrary to the two-body case, in the three or N-body case it is
in general a very difficult task to find explicitly the equivalent set
of first class and gauge-fixing constrainfs. We know that it exists
and so that a model based on eq. (11) and (12) has a counter-part in
the Todorov-Komar approach. '

The model (11) and (12) can be easily generalized to N-bodies if we
use again a N-body lagrangian as a suggestion for the correct choice
concerning separability. ‘

N
L'_"Z. V’IAJ‘(,” (13)

v

Starting from

with 4N
2_ 2.
U, = M Z:Vc-(ﬂ--) ; V.--=V-,; (18)
— "9 4 ¢
1%
we may infer the following set of 2N-1 constraints for the N-body
problem:

..N
Q= P?-'W';?W Z\'V;

. j(r‘.;') ;0 =42 N (15)
N/ !
Bi = 2L Vo o) (orpy ) (16)

where Bp is not independent, but it is implied by Bl""’ BN—l .

The set (15) and (16) has the cluster decomposition property, in
the sense that it gives the corresponding set of constraints for each
cluster when some coupling goes to zero. Even in the case of partial
open chain configurations the correct set of constraints is reproduced.

As an example I will write eq. (16) for N = 4 :

v-l;. (P4+F7—) r\z) + -\7;; (‘174"’(93; ﬁ},) + .V-;,q'({u*{’u, nu)=0
Vz’t (PH' X o)+ Vz’g (Pz’f P2, Maa) + -v;q (P1+Pq. "z.,)= 0 an

-V; (|’4+,’3'r34) "'V:z (PZ*FB; ye) + -v;’q (}’5*'1’0 ' \"39)"'0
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When for instance V;h = 0 , we get three constraints, of which only
two are independent, and these are the same as that of equation (12)
for the particle 1,2 and 3.

One possible objection to this model is that the constraints f7-i
seem to contain only two-body forces, so they would not satisfy the
separability requirement., But it must be observed that.the I?.i are
not the mass constraints of the Todorov-Komar approach, as we have
stressed before. It is the aim of the present note to give some preli-
minary result by showing a possible procedure to get from the Sli and

Bi the first class constraints of the Todorov-Komar approach, at
least in a particular case, that of a symmetric harmonic potential
model. I will not exhibit completely these constraints, due to the
algebraic complexity of the model, but it will result quite clearly
that these new constraints are no more depending on two-body potent-
ials only. I hope that the following analysis will give an insight
into the complexity of the three-body problem, by indicating a pos-
sible explicit way to construct these first class constraints.

At the end I will give the generalization to the N-body problem.

As I have said I will consider the simplest case: that of three
equal harmonic oscillators, so the set (11) and (12) becomes:

Q= 1,47-- m® 4+ r (- %) + ¥ (%4-%3)?
Qy= pi-m2 4 Y (-t + [ (xe-%a)

Qy= pi-mt+ Y (x-x)'+ Y (%3-%a)"

(18)
B1 = (‘P‘+P’-I ’X.-'Xq_) - (47;"'?3, ’X-,_ -’X;)
32 = (P""'Pa) Xl-x‘b) - (P3+?4 ) "‘3"7(4)

Let me perform the following linear canonical transformation
P=P+Petps p X = %(x,+fx,+'x,)
k1=é‘(zP1_P'L—P5) J .V, = zxq"'xt"xa (19)
k7_= i" (i’t—rg) H Yz = Xg2~=%X3

with the inverse
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?4-.— -;—1:1—21(,

, % = x+L
Pz = %‘,-k‘»,k,_ ) xz=x-é-*',+ L (20)
= [ l
medp-kicle , a= x-bnoda

By taking the following linear combinations of the constraints:

Qo = A, +0, +0, \
¢, =22,-2,-Q,
$, = 9, -0, } o
:‘h = 3(g,+8,)
t. = 3B.-B, J
I get

o = -'3-‘>'~—3m‘+{/[3kf+kz’-) eylresed) )

¢y = 4(pk) + 8 (3kkF) + Ly(r2-2wy)

$, = g(rkz) - 4 (kKaK) —~ Flrm) ! (22)

i, = Z(F‘]) + 3“(1771) -—3(k-,f‘1_)
Yy = 2 (f"t) -3 (karz) 'kktv;)

It can be verified, by calculating their Poisson algebra, that 4>i

and 4’i are IIth class constraints. We may take apart .flo

s which
contains the total mass, as an ingredient of the first class constraint,

which could be evaluated following the prescription of Dirac.
In the symmetric model (all coupling constants equal to ) the

set (22) has an important property, which can be discovered by defin-
ing the new constraints:

7({ = ¢c+°"¢i }
Zoo= - 4y

(i = 192 ), (23)

where
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d:z\j\'/g (24)

and the new canonical relative coordinates

Q=% (ktgdn) , P=y%(k-%n)
. . 3w (25)
Q;:'J;'; (k7_+ -"'—'r:_) , 'P:_ =\/;“2:;(" (‘(;_"' "Trz)
We get
% =E§[(p.3&4—ﬂ) + (% (&.‘-af)] |
(26)

%= VE [ (5,30, -%) -6Z (0,0))]

and ll,}2 are obtained by 7(1 and f2 respectively, by the inter-
change of f& with Q,

-X-n = V2 [(F» I -Q,) + Q\F'zi. ('pl'*_—pz?-)]

= @7
=% [, 3R-0) -¢\Z (22))
Lastly JZO becomes
L= fp-awte 3 [3 (00 QMR -
(28)
- 2( (g7 + (&) ]
We have the important property ( ‘{'xr.'f;l{) s St} %”V)
{Xh 'xz} =0
(29)

{t.%li=o0

This is the best simplification we may get by a linear canonical
transformation, since in the Poisson algebra of the constraints only
four independent quantities are present (with respect to six, which
could be a priori present in a 4 x 4 antisymmetric matrix). But
this simplifications is unfortunately possible in the symmetric case
only. .

The form (26), (27) and (28) of the constraints allows to see the



159

way to get three first class constraints (among themselves), which are
in involution (with respect to the Poisson brackets) each other. It
is only necessary to perform the following canonical transformations
(which by the way are all in one of the Dirac classes, so they will
give at the quantum level equivalent systems): firstly we transform
to longitudinal and transverse parts with respect to p :

w

Pr= - ef(p) By + =T
Alp 2 TF:

" R o (30)
QF= - e;(f) Qi + %— & |
(where the €g~ are defined as in the Ith lecture), so we have
P &Y =5..
‘l [% 'QJ} La’
(31)

{:FCA ,ﬁsr.ﬁ =-8¢é gﬁﬂ'

then we perform the phase transformation generated by the generating
function

(&, @) = (B804

[ 183 B2F B (6.8 b. B
¥ 3}!— {%Qa - sz @ - @, (Qm Q- @y @22\) + 2

+2 Q’L Q‘IQQ;)

[ E—|

that is *)
= eva P - P 2 )
T= 25 =R 8,
n,)= €¢* RA = ﬁi}+ %%%:
v = _ = ' (33)
pe = €'*Q; = Q
py = e¥xF,= s )

so that we get

) Agr -5+ {A,BY + % {a, 4,31} + ... .
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71 = -,
fo=-Ta

(34)

In this way we put two of the constraints in form to two canonical
coordinates. At this point we should evaluate the two conjugated
variables fl and P2 from the equations

Xl =0 ! Xz =0 (35)
and substitute the two constraints }Ei with the equivalent ones

% Py - 41 (T, y Mea .Pcz)

'7:. = Pa- '?1 (7, e P;’A)

]

(36)

which have again zero Poisson bracket ‘-11’ f 23 = 0 , and are varia-
bles conjugated to 111 and K2 .

By putting M, =0, = fi(O,TCi;, Qia ) in 2 we will
get a new constraint ffo = O(TQA:PiR) which certainly commutes
with /Zl and ;( 5 s SO giving a set of three first class constraints
(among themselves).

-0
M.

Unfortunately we cannot solve analytically the two equations 5?i = 0,
which are two algebraic equations in yj_ of the 4th degree, so the
program to get the complete canonical transformation cannot be perform-
ed explicitly; nevertheless what we should do is now quite clear, and
the difficulties are quite circumscribed.

To complete the program we should perform a last canonical trans-
formation (suggested to me by K. Kamimura):

;ﬂ.== ETH{k* T

o

’i,’; = e'"!&,\‘ P = P --?; ("Tc.’"t»fca) G
e,

which will bring all the four second class constraints }(i and j(i
into canonical variables. Fortunately, as suggested to me by K. Kamimu-
ra, it is always possible to eliminate between the three equations

(of the 4th degree in _9i )
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X =0 -7—(1-:'0 , (Lo =0 (38)

the two variables @ 11+ P> by using, for instance, the Bezout’s
elimination method, is obtaining a constraint which will not depend
on -Pi and where we may freely put T(i = 0 , which will be third
first class constraint beside Xl and )(2 (it will be an algebraic
equation of very high degree in p~ ).

I did not do this elimination explicitly, which corresponds to the
calculation of a very big determinant (a 45 x 45 determinant for
N=3 ); but it is important in my opinion to realize that it is
always possible by using linear methods only, and even in the N-body
case,

For the N-body case the generalization of equations (19) and (20)
is the following

o= (M) X - (Kt +%y) 5 c=h2, N

= X = ﬁ- (g4 ... +%y)

ko= L0-0pi = Cpeaat 4 20) fiwoo) (0 ce4) | 9
ku’ P=h+1,1+...+ Pr

and that of equations (23), (24) and (25) is

¥ioo= &+ iy

X; = -, A2, N - (40)

where
oy =‘,_‘l“_)(_*1'_“_‘)_ [ ki ¢ N r ]
No < (M-{) (N-C +4)
(41)
P = ‘,(N-\')(N-cu) [k- _ Nu ﬁ'} |
v N ot ' S (N-;) (N=i+1)
and
oL = I X 42)
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Finally the set of constraints 7(i ’ 71 so defined is the
following

£ ___\/ (N=C) (N-i+4)
’ N

('f; 3R -'Pg) +

rod N (N-g-) QF- N (@, +. .+ Q) +

T T (T R o

+
yion  fsa(N-y

. F /) W— )
VIN-i+)(N-i +2) =4,2, ..., N-4 (43)
Xe=)o  witn Q; a— P; (43%)

They enjoy the property

k=0 XKy =0 (4
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APPENDIX

In this appendix I want to discuss in a simple case the existence
of solutions of the constraint equations (11) and (12) . In particular
_the constraints (12) will give some restriction on the character of
the distances between the particles, rij =X; - Xj ,» Which will depend
on the potentials through V’s .

et me consider a choice of the potentials such that V (r ) =
V(ri.) " with V’(r2)2> 0 for any value of the argument, and such
that V(r )—0, V (re)-—»O for r2__. - ® . This means that for
large space-like distances between two particles they become not inter-
acting, while for a time-~like distance they interact.

The limitation V{. = 750 makes more easy the discussion of the
implications of the constraints (12).

Another requirement on V is that pg be always positive. This
can be obtained by requiring that V be bound from above by a value
Vo such that 2V £ m2 .

With this ch01ce we may find a limitation on the values of r2

ij
due to equations (12). By some algebraic calculation it is possible
to show that we have:

o 4 Ge €0
Gr + Rt <O (a1)
Gy + 6 <0

The boundary of the region defined by eq. (Al) is not such that

ria is always < O , for any value of i and J . Configurations

with one distance time-like and two space-like are allowed (but not
two time-like).

The existence of such configurations does not contradict separabi-
lity as defined at the beginning of this‘leéture, indeed, when the
two space-like distances become infinite, and one particle becomes
free, the remaining cluster of two particles has the correct set of
constraints, so the distance which originally was time-like is forced
by the constraint to become space-like.

Nothing can be said about the possible existence of bound states
when the system is in such exceptional configurations, without solving
explicitly the motion for a given potential. But this is a difficult
task which will deserve further investigation.
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1. Introduction

In this note we will study a system described in a given phase
space x' T i=1,2,...,n, by a set of constraints both of
first and second class:

|
O

‘QI' ("“.P;) = g=4...,psn (1.1)

¥ (¢, p) =0 Kz 4, ...,25 £ln (1.2)

where (l, are first class and ;(K of second class (so the ;{K are
even in number).

Moreover we assume that the canonical hamiltonian is identically
zero, so the dynamics is all contained in the equations (1.1) and
(1.2). '

Let us stress that any system can be studied within this scheme,
since it is always possible to substitute any given lagrangian, not
singular, with a new lagrangian which depends on one more coordinate
(and velocity), homogeneous of first degree in the new welocities, so
giving rise to a canonical hamiltonian identically zero (see for ins-
tance H. Rund; see bibliographical note).
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By hypothesis we will have:

L]
M
—oh
q
o
e
4]

{sp LoV = (1.3)

{ﬂf. 'xn} = g Cch’Qq-"’{: kah.fu (1.4)

2. First Class Constraints

Let us study at first the case when the Xk are absent. So our sys-
tem will be described by the set (1.1).

We want to show that in this case (1.1) can be considered as a set
of partial differential equations of first order, in general non 1li-
near, in one unknown function, 8 = 8(x') , the Hamilton-Jacobi funct-
ion:

¢ B8y _
QF FX,(S—"“) =0 . (2.1).
with
.2 _ .
be ool 4, (%) (2.2)

where the p; = fi(x) identically satisfy equations (1.1).
We will demonstrate this in three steps:

i) One shows that the system of equations (2.1) is complete, as a
consequence of the first class character of the fly , and that
it can always, at least locally, transformed into a set of equat-
ions in involution (that is in a set of equations such that their
1.h.s, have zero Poisson brackets each other, identically, and
not only on the surface in phase space defined by the constraints).

ii) Following the Jacobi’s method of integration one can extend the set
(when p<n , otherwise if p = n this step is unnecessary) to

a set of n equations in involution, which will contain n-p
arbitrary constants. It is shown that this is always possible.

This set of equations is solved in the momenta: p; = fi(xl, aa).

i=1,.0e,n; @a=p+1l,..., n, where a, are the arbitrary

constants. This solution allows us to find the form d4S = fi(x,a)
i

ax= .

iii) One shows that
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so the 1-form dS is exact, and a function S = S(x,a) exists.

i) Let us assume that the equations SZy (xl,pi) = 0 are independent

in the P; » this means that we may assume

rank“ Y, “ 'S (2.4)

(If we assume that SlP are a set of'independent functions, that is

that no relation between the S;? exists, it follows that, apart from
a possible canonical transformation which exchanges some of the x-
in an equal number of P; » the rank of the matrix Ibﬂp/va? “ is equal

to p) .
From (2.4) it follows that we can solve the equations (1.1) in terms

of, say Pp s P= 1,...,p

1’?=1}P IX;'P“) s a=++1,..-,ﬂ. (2.5)

The set of equations
B xp) = 4p ~4p(x' pa) =0 (2.6)

is locally equivalent to the set (1.1), in the sense that it defines
locally the same surface in the phase space.

Now, as a consequence of the first class character of the Slg
the F? are in involution. Indeed

“’f"\'f ("ifa) y be ~tg (x“,*.)’}

does not depend on pf‘ s p=lyeee,yD

{F}'F;} = f%%;— - ?—2—:{—’5, ¥ ‘\%.'1\*«.5 ; Mi-’fﬁ’% »(2-7)

so in order to show that it is zero it is sufficient to show that it

is so when Pp= ﬂ (x,pa .
Now from (2.5) 1t follows identically in x

-Qf( X’ ’ ‘l’p(n-fa), PA) =0

from which we get

?& We e (2.8)

B xi '81)¢ Oxt

i and P,
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’ag_p + an g\,‘C ~o

et pe Tape (2.9)

where zr means that they are equal to zero when in the partial deri-
vatives of £lp we substitute Y, for 4, .
The (2.8) and (2.9) can be rewritten:

2D . 9%y Dlpe-¥y)
xi - ')"q- '?x‘:

Qs ,, 2 Ape-te) (2.11)
p: e P w
since the last equations for i = 1,...,p Dbecome identities .
From (2.10) and (2.11) it follows

(9 .00 = 5t mor Arebe et G2

(2.10)

where T,€ = L...,P

Now the 1l.,h.s. is weakly zero, so that if we put
(")

2Q¢
2y = {h"“m ‘l’e"‘\'e}
Pe
we will have
’BSL' (_f) x
22 28 ~0
Vb
. . . . @
which is a linear homogeneous set of equations in ‘Zi, with the deter-
minant of the coefficients different from zero by hypothesis. So it
follows - '
Z2 = 0

By iterating the argument we also get

{"f"\’f; ?tr“q‘w} &0

from which it follows that

{Fo. %t = {pp-tp, pe-te} = O (2.13)

on the entire phase space an not only when p, = d?(xi,pa) .

The set of equations (1.1) is complete in the sense used in the
theory of system of partial differential equations. We have shown that
it is locally equivalent to a set in involution. So the step (i) is
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demonstrated.

ii) The set F; can be always extended to a set of n functions
in involution (if p<n , otherwise this step is unnecessary):

—F‘; ('K‘..?c) . c=4,..,n (2.14)
indeed, if we consider the equations in G -
{Ff,G} = 0 pEhoap (2.15)

they are a set of homogeneous partial differential equations of the
first order in G , which are in involution. Indeed if we put

Xp (G) = “,Ff.&} (2.16)

we have

= {RARGHY - {RAR.6N - (iR R 6} (217

as a consequence of the Jacobi’s identity and of equation (2.13).

From a theorem on homogeneous linear systems of partial different-
ial equations, we know that the system (2.15) has in this case (comple-
te system in jacobian form) n-p = independent solutions in involution
among themselves besides the F; . Ga s @ =D+l,...,n0 .

If we now choose a Ga we have a new set of equations as (2.15),
with G, added to the ¥

4
the same kind. We can therefore iterate the procedure until we will

, that is a system of p+l equations of

have n functions in involution; at this point the procedure will
stop, since a set of n equations of this kind has a constant as
only solution.

It is so demonstrated the possibility of extending {in infinite
ways)_the set ‘F to a set of n functions in involution,
Fi(xl,pi), i=1,...,n.

Since adding to the Fi some constant their involutory character
is not altered, we may put
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felx pY)= o . p=l...p
. , (2.18)
Fatx.p) = ¢ , a= ptdy.os
where ¢, are n-p arbitrary constants; we will write
Foxd,p0) = ¢ LKz d,.n (2.19)
with
G=0 P=diop (2.20)

Since the functions Fi so determined are independent by construct-

ion, apart from a possible reordering of the canonical variables (by
eventually performing a canonical transformation which interchanges
some X with some 1 ) , we may assume

IV
\———'—\ + O (2.21)
ob; |
It then follows that we may solve the equations

TE(’(gP) =C;

in the form
b; - L(xc‘c;) =0 |, =4 (2.22)

By using the same arguments as in (i), we find that the new set

o= -0 (2.23)
is in involution:
{&.B} =0  (2.28)
iii) From the equation (2.24) it follows immediately
:;—‘L;s - %—%ﬁ =0 (2.25)

so the 1—form
4 = §; (x.0)-dx* (2.26)

is exact.
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It follows that, in the hypothesis that the set of constraints sz
is of first class, it exists a function

§ = Stxi0) (2.27)
such that the
29
C= 25 2.2
p dxi (2.28)

are solutions of the equations (Hamilton-Jacobi’s equations)
. RS :
¢ L2 ) =
'QP (x¢, ” ) (o) (2.29)

The function S is defined by (2.26) apart for an unessential ad-
ditive constant, Neglecting this constant S will in general contain
n-p arbitrary constants of integration. ’

The constraints are contained implicitely in the set of equations

-4 e =0 (2.30)

indeed by eliminating the n-p constants cy from this set of equat-
ions, we get again the original constraints (1.1).

The solution S so.obtained contains as many constans as the
number of variables x* minus the number of constraints fzf . So
it is a complete integral, and it is known from the theory of systems

of partial differential equations of the first order, that from a com~
plete integral it is possible to get all other integrals (the singular
and the general integral) by means of differentiations and eliminat-
ions only. So the Jacobi’s method of integration gives a general kind
of solution.

When second class constraints are present, the set of equations

)‘k = 0 cannot be interpreted as a set of Hamilton-Jacobi

equations.

We will see in Section # what can be said in this case.

Before concluding this section, let us observe that the transfor-
mation

Qc = %

122 = ?; - {;(%.C) _ (2.31)
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is a canonical transformation, due to equations (2.24) or (2.25). It
is a phase transformation, generated by the function -S(x,c) :

Q = €% x; = x;

—Ps' $* b = 17,;—.‘;

where the operation X is defined by

e (2.32)

et 48 = B+ {ABY ++ {A4AEY] +. .,

3. Equations of motion

The first class constraints 323 are not in involution in general
(the r.h.s. of eq. (1.3) is not identically zero in general), so that
the adjoint system (characteristic system) associated to them, written
in parametric form, as in the following equation (3.2), is in general
not integrable. We must substitute to the £Llp the Fe

'F;,('x. P = bp - 1\,( (,‘}'.1,") =0 (3.1)
The adjoint system associated to the set (3.1) is given by

dx' = &X",F‘;} A99 ; v=zd,...n

(3.2)
dp= {p Tl d8F 5 e=ap

where the parameters 9? are defined by these same equations.
From the first set of equations we have for i =e¢ =1,...,p :

dxT= AxT poy (xipYdof = doT
so we can choose
xé = of (3.3)
From the other equations we have
J?P = ’[’P"-"rsdxc
dx® = -4x? 4.} dxT
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A\’A'-" -)\?ﬂ'trg Axv (3-4)

so the "hamiltonians" which generate the evolution in the "times" x ¥

are - ¢¢ .
From (3.2) it follows

] a4
G‘-P(*.P.G) —LS';} +u.ﬁp}}ol.99 (3.5)
Tt is easily verified that the system (3.2) is integrable
) c _ ¢ B
ot - o VY = HARLED -
= {4x} Rl R/ + A A Fe, Y=
76l 26>

and so on. .
It even easily verified that, if the xt s Py satisfy the equations
(3.2), they also satisfy the equations ¥, =0 , and so the equations

'Qf= 0 . Indeed

dRxp) = { R 5K} 40 = © (3.6)

so that, when for some value of the e% it is Fe = 0, they remain
so for any other value of the parameters, that is for any value of
x* s Py belonging to the same characteristic strip determined by
eq. (3.2). '

Equation (3.6) can be called the stability condition for’the F; .
The same holds for the Ilr. Indeed when f2,= 0 , it is

b = PHhpe)  (THy)

' (3.7)
R -
hrcw P%ap) )
see eq. (2.10) and (2.11). It follows
I, = 2% dT, (3.8)

'}fr

from which it follows the stability of the constraints Slp .
We want now show that the solutions of the equations of motion
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(3.2) (hamilton equations of motion) are the same (apart from an iden-
tification of the constants of integration) as that obtained from the
Jacobi’s method; that is, given a complete integral of the H-J equat-

ions

g

fl

¢{"'C) + const. (3.9)

the solutions are

1;‘ -_-'_;_a_)?’. ’ V=d,....n (3.10)
R 24 , azpit,,n (3.11)

Pdca
where b2 are new arbitrary constants, together with the equations

of the constraints (3.1).
It is always possible to introduce p parameters T® in order to

express the equations (3.10) and (3.11) in the following parametric
form
X'z % (¢, b, T }
+: = P {(c, b, T) (3.12)

I will assume that the parameters Tf are essential, that is that

rank _?_X_‘:'“ =P (3.13)
2T )
If we differentiate the eq. (3.11) with respect to TFf , keeping
v® and ¢, constant, we have

2 (M ) =22 o (3.14)

2te Ve, ) T Axda. 2T

since ¢(x,c) depends on tf only through the x' . On the other
hand, if we differentiate eq. (3.1), where p; ='3¢/;x£ , and where
the dependence on 4 is only through the function ct s With respect

to ¢, , we get

?9F 92¢(X.c? -0 (3.15)
Op¢ RDCa DX
Now the ramk of the matrix | Mol is n-p (this fact stems from

the completeness of the integral ¢> y it is indeed the precise mathe-
matical definition of a complete integral), so between the solutions
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of the two systems (3.1%4) and (3.15) will hold a linear relation:

W _ o (3.16)
M »t® .
where in general (:G. will depend on c, v® and T® (see the Ap-

pendix for a demostration of (3.16). We can at this point define a new
set of parameters ©f such that

- ')GP, _osf
Q" Aev = % (3.17)

and put (3.16) in the form

w9
Y sﬁ (3.18)

which is the first set of the equations (3.2).
To get the second set of equations (3.2) we may differentiate in
TP the equations (3.10)

. 13 !
3 _ 3.‘*:_. ¢ (3.19)
Y4 AMxiIxi 2P '
i

and differentiating in x* +the equations (3.1) we get

W , 2B 20 (3.20)
St T op;  axows

or, using (3.16) :

0 o dxi 2 2%, e Op |
xS + G 2T T AxIxi | Ixt +Co 2T o .2

or, with (3.17)

_243 =- %E_ (3.22)

which are the second set of eq. (3.2) .

Now the equations (3.2) have solutions which will depend on 2(n-p)
constants of integration, since by eliminating the parameters Tf we
will get n-p total differential equations for dx' and n-p for

dp; 3 2(n-p) is the number of constants that appear in the Jacobi’s
solution (3.10) and (3.11).

This shows that the solutions (3.10) and (3.11) are the same as that

obtained from the hamilton equations of motion (3.2).
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4, Second Class Constraints

Let us consider the set of constraints. of both first and second
class (1.1) and (1.2)

Q.p) =0 p=A...pen
(4.1)
')(Q (x,p) = O , 8=4...,2s
where the second class consfraints XC are even in number.
Let us assume that
{).|-s in (4.2)

otherwise the procedure we will describe in the present Section is
not valid.

It is in general possibie to substitute the set (4.1) (at least
locally) with a new set such that p+s constraints are of first class
among themselves, and the remaining s are all of second class (see
for instance S. Shanmugadhasan, Journ. Math,., Phys. ;&,677(1973), where
the condition (4.2) is implied, and references quoted therein). So
let me suppose that SLP and f1 with & = 1,...,s are this subset
of first class constraints among themselves. Let me call the remaining

Ko with L= s+l,...,28 , @ :

@K = 7(s”< , K=4,...,s (4.3)

For what we have said in Section 2, it will exists a function & =
S8(x,c) for the set of first class constraints gz?"fe (t=1,...,s)

S = b (%, ca) + conet. (4.4)

with i =1,...,n , and a = p+x+l,...,n . The n - (p+s) constants
c, are arbitrary constants of integration. The additive constant
is not essential and may be neglected. The 8 is such that

23 2¢m0
e = Qxv  Oxt

(4.5)
and these functions of x* satisfy the equations

Relx.p)=0 . gah.,p
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foetxp=o | 2=4,..,5

identically with respect to

(4.8)
c, .

Let me substitute the constraints {1, and f} of (4.6) with the
equivalent set of constraints in involution

Fxp)=0 ped,. . phs (4.7)
The Hamilton’s equations of motion (characteristic system) associa-
ted to the ‘ﬁ. will be: '
(4.8)
AP«' = ‘1’79'- Fp} 'J*G.P

where the p+s parameters B are defined by the (4.8) themselves.
Due to the involutive character of the F; the system (4.8) is inte-
grable.

It useful at this point to introduce the tensorial notation

124 = (x4 .., %" oy, pa)

(4.9)
o(::A. 2,...
and the tensor

e 0O E
lex®| = -E 0 (4.10)

where E is the unit matrix nxn .

The equations (4.8) can now be written

d%% = {%% T-'rj dpt (4.11)

where

¥,
TRy = ef x5 (4.12)

If we now require that the solutions of the equations (4.11) must sa=-
tisfy the further conditions (constraints (4.3) ) :

@n (g ) =0 (4.13)
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we may think at this condition ag a restriction on the parameters OF.
This means that it must hold

®.(2%(eM) =0 O (maw
or, for the dO%

= 4,
YT Sor (o] (#.15)
Let us put »
B, = P6() 238 (4.16)
? E% 20r -
which can also be written (see eq. (#.11) )
| ? G« (3)
’B‘.‘r = F . &ge(. FPE = { ®K| ‘:l""] (4-17)
The 89'\ will be restricted by
J 'B‘.(PAG"‘= o : (4.18)

This is a set of total differential equations for the 69"',‘which
can be thought as the adjoint system associated to the linear homoge-
neous system of equations in the unknown function u = u(©) :

§E‘P : %L”: 0 (#.19)
where
'B'f!,-f?a".‘f =0 (%.20)

A solution of the set of equations (4.18) is thus
der= BF, dwf e e (4.21)
where the P are new p independent parameters,

In other words, the conditions (#.13) on the solutions of the Ha-
milton’s equations of motion reduce the number of independent parame-~

ters from p+s to p .

Let me observe that the system (4.11) plus (4.13) is not an inte~
‘grable system of the mixed kind (see for instance L.P, Eisenhart,
"Continuous Groups of Transformations", pag. 4, or T. Levi-Civita,
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"The absolute Differential Calculus", pag. 29 and foll.) . Indeed we
know that the original set of constraints is not an integrable system
of equations in some.function 8 , such that '}%éx; = p; . Neverthe-
less we can consider the conditions C2‘= 0 as supplementary condit-
ions on the solutions of the integrable set of equations F;_: 0.
It remains to calculate the coefficients ﬁ?r . The coefficients

BX  defined in (4.17) constitute a rectangular matrix s x(p+s) .
This matrix has certainly a rank = s , since we know that the second
class constraints Xy , &= 1,...,2s , have the property that

H%e.fg'}l * 0

by relabeling, if necessary, the constraints 1{ , I may assume that

the second class constraints of the set F;,CL are

F;+K , ©, k=4,...,5 - (4.22)
while the E; (¢=1,...,p) are first class.
Now the matrix of the Poisson brackets of the second class constra-
ints can be written

‘ A B
M= . ol _ (4.23)
where .
A%h = {C&,C&}
) (klk =-4,....5) (LI_.ELI_)
B P { @K. Fp-l-h-i

The inverse of M (which will be useful in the following) is
\ 0 - ES-,
M= (&.25)
-\ S i
B BAB

and

et M= dbB. det (-B) (4.26)
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It follows that det M £ 0 if and only if det B £ O . So the
rank of the matrix “ B “ is equal to s .

Using this fact, the solutlon of the linear homogeneous system
(4#.20) can be found using the general solution given in the Appendix,
with the choice C?} = Er .

It is

B, = S - 84 (8", {©,. F1 (#.27)

where =1, ..., P¥s 3 p=1,...,p ¢ kyh = 1,...,5 § and substi-
tuting in equation (4.11) we get

dz%= [{2R1-134 R0 (35 16, Rildwr  @zs)

Let me observe that another choice of the solution (4.27), with
Cw} # Sr , will have the meaning of a change in the parameters,
from w§ to some new wWf such that

Cff dwf = dB° (4.29)
with
2B
cl, = 2= (4.30)
f 2weP
-
This means that the choice C? S} imply a determined choice of

the parameters in eq. (4.28)
Since by definition {Fp+k’ FPS = 0 , the equation (4.28) can
also be written in the form

d3%= [ {34 R) - 13 R (BN A6, R+
1300 (B AR Rl - (4.31)

-8ETELY (87546, QY (B AR, 71 dw?

where in the r.h.s. we have added quantities which are zero.

We recongnise in (#.31) the structure of the Dirca brackets, with
respect to the second class constraints and ® g * E=lyeece,s .
In writing (4.31)use was made of eq. (4. 25?

Finally we may write
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d3'= hg* By*dwe (4.32)

The integrability conditions for this set of equations (Hamilton-
Dirac. equations) can be easily verified by taking advantage of the
properties of the Dirac’s brackets. We know that the Dirac brackets
verify both the Jacobi identity and the relation

i gmyt = 2O 43t mi*

D3
This is enough to verify the integrability conditions, since
Ok o - 1 QA =% *
Seoof = soe BRI = U RV R -
*

but the last term in the r.h.s. is zero since, using eq. (4.28)

“F'?‘F}]*= {I—;'ﬁ.} - (FP' F.f"":.i (B.‘).fh* @K)F;'}

which vanishes due to the involutory character of the F .

No particular hypothesis are necessary for the constraints GDk ’

except that they must be in number less than the Fi, s or better

that p # O , otherwise the only solution of (4.18) would be d6%= 0 .,
Let me observe that the equations of motion (4.32) are weakly equal

to the Hamilton equations (with the Poisson brackets in the place of

the Dirac brackets). The result (4.32) is here meant to show that the

procedure here developed is equivalent to. that of Dirac, See also the

following Section where the method is applied to the two-body problem.

5. Application of the Hamilton-Jdacobi Method: the Two-Body Problem

Let me consider the Komar’s constraints for the two-body system,
where for simplicity we assume equal masses (see Ith lecture),

F,

il

P*+49% - 4ant + 4%
' (5.1)
R= (pa)

where
_ ppr

b=
. rt rre

O

(5.2)
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and
Y RS
4= /2 r=

(5.3)
Ko =Ky

The constraints F1 and F, are in involution, that is(%)

iR RY =0 (5.4)
We have in this example: n =8, p=2.
- Let us put
12 = €4y o G=d2s)
_ (5.5)
= (9
Y = (Pdﬂ
where
v . N
€p) = N i €al )=-§; + :taiﬁ;
A (e M AP 2 M(pst1)
(5.6)
-
The inverse relations are
Fe=m (P 42 ¢ e
T (5.7
Th= - Eulp Xy + -‘;—‘ b
The Poisson brackets of the new variables are
{3,, I ERR Y . A7 Ry 4 (5.8)

(#) Signature: +,--- ; {A, B} = 3_::_.?._ 28. A

oty x¥} = g ;5 o, ') = eV
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We may verify that the following objects are in involution with
F1 and F2 and between themselves:

v &

Ty= qiver -6 (5.9)
Fe= s te IS -6

¥;’: Pe - ka

F.;= po - ke . (5.9
= p-l

where €, ki (i = 1,2,3) are arbitrary constants.
The set (5.1), (5.9) and (5.97), when we put F, =0 (i = 1,2,..
«ey8) , is equivalent to :

bo - k- 4(q, 3,4 r0) - 4m® =0

(5.10)

qr+c*-¢g =0 , =423

F. - E = 0
but where now it is

2= 6;“&) 4 « i< €4 (k)v T (5.11)
and &rE ( o’ k)
where(%)

ko= \kZe M | M= 4mPid(g4€,4€3) (5.12)

(#) We have selected the positive value of k, for simplicity.
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If we solve the constraints (5.10) in p ¥ and q (or in q,

and q ) , by selecting the positive values of the square roots, we
get

pr = k" 4= ERY,

(5.13)
%;=\’52“CI_}7‘ .

or, more explicity

P° = VE.1+ Gmt 4 4 (€4 +€+Ex)

FoF |
9{,=i7’- Ver-en?

A=}
qt
where now all is expressed in terms of the six arbitrary constants

£i and k; .
If in (5.14) we eliminate these six constants, we recover the ori-
ginal constraints F1 and F2 .
Equations (5.14) give the set (3.1) in this example. From equation
(5.14) we may calculate the Hamilton-Jacobi function S :

(5.14)

;: ELNR) Y &, —cr®

43 :‘-'—fh,alxo +'F.a(;<"-q_adro +'%_'.¢|T: =
3
= - kfdx, + E Exlk) V€ ~c? dr, (5.15)

(since from equations (5.14) we have 4% = *Gf(k)VG,,—C o2 .
We may express T; in terms of c, and v

dr = - €3, (0 X, _kﬂv; A¥ (5.16)
from which (kPGArlk)= o, %=1,2,3)
3
A=y
so that dS can be written

d9 = - kt‘d'xr_ + ? f).—ca“’- 'A.'C;. (5.17)



> 9= -kx)s = > [{E gﬂ} €r-cTZ +
We 3

Y6y - aveam 1D } + const. (5.18)
VEa

where S must be thought a function of x T and rP, and of the
six constants €, , TE ;

The solutions of the equations of motion can be got from S8 by
putting equal to six new constants the derivatives of 8 with respect
to éi and ki:

@_S__ e = _ k.' . - E R 31‘;
k] =h; = T Xo+ %+ LT__ Er-cr,> . T (5.19)
where
gé —__.L.._[ R Y ."'}-—
W Mk ka-r; g,\. (- %)
_ (5.20)
- T (4 - _“_>l-‘____)
Ml Al’ kd(ko"'M)
and g 2 _—
RS = XX 2 YT —cry?
e = O ko + Mz ; Mk A ea COo™ +
1 Ve L, (5.21)

P ArC A

W Ve,

Equations (5.19) and (5.21) will give x; and r; in terms of
X, and T, and of the 12 constants (the correct number for the
initial conditions for two particles) €. , k; and hy , a; .

Following the considerations of Section 4, we may put the restrict-
ion (p,r) =0 or =0 on the solutions (5.19) and (5.21).

In this case we have the following simplication

_ 2Xe ! R

Qo ==Lt gE M Aw = (5.22)
. r‘~ kary -8, (K.F)

/Lb. - lSLi?.‘.x- +Z e._c('z. Ay Al ind (5-23)
Ko ' Y ke (M+ka)M '

where the last term in the r.h.s. of (5.23) is a constant

- T\epmeny - il D
A M(ko+M)
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Z_\[_ka (6 piu [27C (a;-a5)]

We may redefine h., and write

1
'X.,:ll. l(k—‘iXQ

(5.24)

K /»w[zra+—-)]

from which finally we get the final form of the solutions

X = l"i-\-% Xo

APHOR M(mm) \/E_2 [d‘ ax+ 5 )] 5.25)
Q=L§k,@ m[¢€(aa+%)]

M

For the momenta we have

F:E , Po= fi’ﬂ-hm"ﬂ-dl Zeg
4 = Z( AV ?(—k_\f—rﬁ) {€, - u»[z\!' (“A+ZX°] (5.26)

TR [ )

It can be verified that these are the solutions which we could
have got from the lagrangian equations of motion, after having elimi-

nated the parameter T in terms of S
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Appendix
In order to demonstrate the equation (3.16), we will study the so-
lutions of the system (3.14). Let us put

O ot c= s e=d .
z, = e o =han s p=apen) (a.1)

M2, 92%{“ (@=ph ..y m) @
The rank of the matrix M = “ M?i“ is by hypothesis n-p .
Let us use the following convention: a prime to some index will
mean that it varies on the complementary set; for instance if o= 1,..

cesp 3 o= p+l,...,n .
The system (3.14) can now be written

! y ’ .
N %m0, (pheapifmprpniizhom) )

Without loss of generality we may suppose that
!
Mt +0 (8.8)

so we can solve the system (A.3) in the ?%P as functions of the %;:
which are left undetermined. )
The solution is

! ' e )
= - (W)l M7, 35 (4.5)
which can be written
@; = (st - 6;. M)eL, Mv',.). i“; (4.6)

since for i =0 we have an identity.
In order to express the fact that the g:.remain arbitrary, let
us put them equal to the elements of an arbitrary matrix Ci}

Zo= (1y 5 (M) e M«').c‘g‘r (4.7)

which for any C:} is solution of the system (4.3)
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If we have two solutions which differ for the choice of the C?}
. ¢ o ) o/ 0‘" o ‘
3i= (8e- 8- ()0 MTL)C],
‘ o D e e (4.8)
Lt o 1 -
qlf— (SQ-—SrI (M’)c‘-l-M'r)Cz_P

it exists a linear relation between % and 42 if one of the two
matrices 01,02 is not singular, say Cl .
Indeed if we put

. A _ 2
Af‘r'q-f - C&'P (4.9)
we get from (A.8)

,yzi =A‘¢,,Il : (4.10)
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CONSTRAINT RELATIVISTIC CANONICAL PARTICLE DYNAMICS

F, Rohrlich

Department of Physics
Syracuse University
Syracuse, NY 13210, USA

I. CLASSICAL THEORY

1. Introduction

Within the last few years very considerable progress has been made
in the development of a theory of interacting point particles where ‘
the interaction is not described by an intermediate field but is direct.
These lecture will summarize the present state of the art from the
"Hamiltonian"” point of view. Other formulations which are expected to
be equivalent to this view (at least in a certain sense) include the
Lagrangian formulation and the predictive dynamics. But neither of
these seem to have been developed as far as the (generalized) Hamilto-
nian formulation. They are described by other contributors to this
conference,

The five words of the title of my lectures are meant in the follow-
ing sense.

anamics: This theory is not meant to be a fundamental theory of
interactions and is not intended as an alternative to quantum field
theory. Rather, it is a dynamics in the sense that it describes the
motion of particles under given "forces" which are to a large extent
arbitrary, although important restrictions on them will be seen to
emerge from the requirements of invariance, consistency, cluster pro-
perty, etc.

Particle: This is a direct interaction theory between particles.
Fields as mediators of interactions are not considered although they
are not excluded in an implicit sense: if the fields of a field theore-
tic interaction are eliminated in favor of the particles an example of
the direct interaction theory may result. Also, direct interaction
theory may beAan approximation to a field theory. This is of special
importance for phenomenological applications.

Canonical: The starting point of the theory includes a canonical
algebra (a symplectic space). But it is not assumed that these canoni-~
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cal variables have direct physical meaning. In general, physical varia-
bles emerge at a later stage of the theory.

Let the N particles be labeled by a,b,... &and the components of
the canonical varigbles q and p by k, € , ... then the canonical

algebra is in classical physics

{“-r:.f’u} = XM,'S’;: (1)

i.e. a Poisson bracket algebra. In quantum physics it is a commutator

algebra,
| [‘}ax.fhc]: o aL'g‘; (@)

More generally, one envisions a 2Nd dimensional symplectic space r
where d is the number of independent components of q (or p ) .
Relativistic: The notion of special relativity implies two concepts
of relevance here, Poincard invariance and the irreducible representa-
tions associated with free particles. Poincaré invariance
requires that the functional form of the generators of the Poincaré
transformations PY(q,p) and M'w(q,p) implies the Poincaré algebra
as a consequence of the gq, p algebra., It glso requires the physical
description (for example the classical world lines of the interacting
particles) to be covariant under Poincaré transformations. We shall
here develop a manifestly covariant theory although manifest covariance
is not nécessary for a relativistic theory. Specifically, we have, using

o v to take on the values 0,1,2,3,

?ﬁ‘\;f“r : MW:Z; (4an p)* (3)

The irreducible representations associated with a unique mass m s o
and spin s » o , [m,s] is characterized by the values of the two

Casimir invariants
® - _m?
and

WEW, = +mP4(A44) , (5)

where

Wro G &)
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is the Pauli-Lubanski vector and S;’ is the dual to the spin tensor
s | Equation (4) is the mass shell equation of a free particle and
will be a basic starting point of the theory.

Constraints: A covariant formulation does not use the minimum number
of variables (the six components of ?fa and 5; for particle a cor-
responding +to the six degrees of freedom of a spinless particle) but
uses four vectors qff and p,, thus adding two variables, qg and

Pao for each particle. These additional 2N variables must eventual-
ly be eliminated. Suitable constraints are necessary for this purpose
so that one finds that the need for constraints goes hand in hand with
a manifestly covariant formulation. '

Hamiltonian dynamics with constraints was developed by Dirac, Berg-
mann, Komar, Sudarshan, Mukunda, and others. Some references are pro-
vided at the end of these lectures.

2. Constraint Theory

In the time available here it would not be possible to give even
an introduction into constraint theory1’4.However, since some basic no-
tions will be needed in the following presentation I shall give here
a few definitions.

Constraints are functions of the q and p which vanish in some
part of the phase space [° . They cannot vanish everywhere in ™ ve-
cause that would contradict the canonical algebra which required all

q,p to be‘independent from one another. The symbol o (weak equality)
is used to indicate validity of an equation in only part of " . Con-
straints thus have the form k

Cnlg.p)=0 (7)

First class constraints are characterized by the fact that they com-~

mute with one another (i.e. have vanishing Poisson brackets). Since

each first class constraint permits the elimination of 2 variables,

one needs only C=N such constraints to eliminate 2N variables.
Second class constraints do not commute with one another and in

fact must satisfy the following condition: 2 S second class constraints

(they always occur in even numbers) define a 285x28 matrix D ,

—D= (Dm'n) J Dmu':‘.cﬁhc'\} (8)

with the property

IDl= dotDd % 0 (9)
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Every set of constraints can be divided into first and second class
constraints. For the elimination of 2N wvariables one needs F+2S8
constraints such that F+5 = N .
25 second class constraints reduce the 8N dimensional phase space
[ (8N) to a 8N-2S dimensional one, [/ . On [/ the variable q,p
satisfy an algebra with a different bracket, the Dirac Bracket. That
bracket, {., . }"‘ , is defined by

» .
{A,8Y'=1{A.8) -{a.c.} (v),...1C..B} o)
where the summation convention is assumed.
Given any variable A one can associate to it a variable A* such
that
A* x A (11)

which commutes (i.e. has vanishing Poisson bracket) with all the 28
second class constraints

{A"‘,C’m}x 0 (m=14,2,...,28) (12)
2

These "star variables" are obtained as, follows™

A*= A- {A«am} (D-|)mn Cn. (13)

The q"L and p* span a symplectic space isomorphic to I"' . Their Pois-
son brackets on [' are just the Dirac brackets. In fact,

{A% B*) = |a% BY » {AB*} = JABYV (14)

If S8=N, i.e. if all constraints are second class then the q™

and p¥* are the physical variables since they obey the constraints,
For example, the physical position xé‘: ég‘gg q;‘ is equal to the
position on the subspace F’ . That subspace is (in that case of S=N)
the 6N dimensional physical phase space which we shall denote by qu .

3. The Geometric Structure

The theory in the form in which we shall present it here developed
out of the independent proposals by Arenss,Todorovﬁ,and Komafz as well
as a number of others (see the references for a few representative

papers).
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Starting with the free mass shells (4) of N particles,
P:+~n: ~ 0 (a=4,2,...,N) (15)

we see'that these are N first class constraints, i.e. the correct
number for the elimination of 2N wvariables. Interaction is introdu-~
ced by making the mass depend on the variables. More precisely, (15)
is replaced by

K= pa +md + dytap) z0  (azd2,..,N) (16)

where Cba vanishes in the free particle limit and is in general a
function of all the gq and py (b=1,2,...,8) . It is called the
interaction function.

One now assumes that the first class character of (15) is preserved
in (16),

{Ka.’KL} x O (ab =142 ...,8) (17)

Sazdjian has given arguments for the necessity of (17) which we shall
not repeat here.

The N equations (16) restrict [7(8N) to a subspace, M (7N),
the general mass shell hypersuface. Consider any point 7—: (ql,qe,..
oo QysPygecee pN)eM . The quantity K, can be used as a generator
of a trajectory through Y ¢

d

.=k (18)
The parameter along that trajectory is here denoted by Ié . The in-~
tegrability condition of the equations (18) is just the first class
condition (17). It ensures that the N trajectories generated by the

N K, all lie in M ; they span an N-dimensional surface ZJ(N) .

Since every YeM, lies on some (unique) surface Z , it follows that
-(18) generated a foliation of M ,

M=Zed | (19)
Or, one can define a quotient space9 é by
¢ = Mr/z (20)

é~ is the 6N dimensional phase space of physical points: .all points
on a given leaf Z_ are physically equivalent since they differ only
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by weakly vanishing terms. The physical motion must be a canonical
transformation of @ into itself, a canonical automorphism.

Z(n)

\
\ '\ ',

X d(eN)

Fig. 1. The general mass shell hypersurface M (7N) as a
foliation T (Me & (6N 3’ Those trajectories from
on ¥ are drawn that are generated by K, and
by Kp .

If one chooses a set of _i‘unctions

Wa = Wa, (4, p) (21)

and constructs the linear combination

H=2Z2 wa¥Ka (22)

one obtains a generator that also generates a trajectory from Y onZ. .
For every set {u)‘} a different trajectory will result. These trajec-
tories on Z_ are called gauge motion since they are clearly not phy-
sical motions and are generated by constraints. The points on a gauge
motion trajectory all correspond to the same point on é s Since all
points of a given J. correspond to the same point on & .

4, Fixations

The geometrical picture leads to the physical phase space EE as a
quotient space, equation (20). But it does not provide equations of
motion. For that purpose some "time parametrization" needs to be in-
troduced which permits an explicit description of the evolution of the
system5’9. In Minkowski space such a parametrization amounts to a
specification of a family of three-dimensional hypersurfaces (usually
taken to be spacelike) labelled by some invariant time parameter T .
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For the N particle system such a time parametrization amounts
to a 'specification of the variables qao in terms of the other varia-
bles in phase space. Thus, one needs N equations (necessarily weak
ones)‘involving the N qao . Since these are to fix the hypersurfaces
which.characterize successive states of the system they are called
"fixations",

%a(q.r.'c) x 0 (a=4,2,..., W) (23)

This family of surfaces is labelled by the monotonically increasing
parameter T, and is required to intersect the family of surfaces

(16), i.e. one requires

lalz 4 A +0 (28)

ah = fdn‘k‘B} (25)
One can think of (23) as providing a‘functional dependence of the qao
on T and on the other variables.

From the point of view of constraint theory the two sets of equa-
tions (16) and (23) form a set of 2N second class constraints, equa-
tion (24) corresponding to (9). Such a set has the property that the
coefficient functions wy of (22) are uniquely determined by them
if one requires these constraints to be conserved under the evolution
generator H ,

Because of (17) the K, are trivially conserved,

. HY =0 (26)

For the %;_one has, because of the explicit T dependence

e x (27)
T +{1A| H} ~0
or
(A_‘)ab ')-z
(summation convention) (28)

Thus, the fixations (23) fix the evolution generator uniquely to be

H=-%, (8", %% @



197

This generator yields a unique trajectory

%’C[ = '\‘" H.i % *YI’KAE : (A-')QL. %Ltb— (30)

Since Y has the 2N components q: » Ppy o this equation is just a
compact form of Hamilton’s equations of motion for our system.
From (18) we learn that the N times 'ta are related to T by

At _ . _ w0k
JT T Wa =- (4 ae e (1)

This equation relates the "many-time" formulation to the "single-time"
formulation of dynamics. That relation is unique for any choice of the
fixations X, , (23) .

However, it is at this point difficult to understand why (30) should
have anything to do with the physical motion of the particles since
(18) is clearly a gauge motion and any linear combinations of gauge
motions is also a gauge motion: the point on é does not move because
the trajectory remains in a given leaf.

5. Physical Variables12

The physical variables ‘%: q#t"'ﬂstff;r"f: are by definition
variables that equal Y on ® and that commute (have vanishing Pois-
son brackets) on § with all the constraints. When all constraints
are second class these are just the star variables constructed in (13).
The 2N constraints (7) consist in the present case of the N con-
straints(16) and the N fixations (23). The matrix D has the form

oA
D= o 2
-A E 0 ~ (32)

where

Oan= A0, K0} (5%)

and its inverse is

o '-8"
= —&_::—A:‘—G- -5_‘ (34)
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Substitution into (13) then leads to the physical variables

= Y-y CEY,K
e Ky [ (@g + (0080 K] (35)

One verifies easily that they satisfy

ey, iptal=o 4y Aay =0 (36)

The equations of motion of these variables are therefore

A i
2l = 2 i yy= 37)
dt CX- h H}

since they depend on T explicitly via the X. . But y and the K,
are not explicit functions of T so that (37) applied to (35) gives

I = hKd (o), 2 (38)

These then are the equations of motion of the physical variables. And
we now discover that these are just the Hamiltonian equations. (30) on
the physical subspace. ‘

One concludes that the gauge motion associated with a particular
set of fixations is just the physical motion on b . For a fixed
value of T the f* span a physical spaée &* which is a different
representation of the quotient space @ for different =T .

We now turn to a brief discussion of the center-of-momentum varia-
bles (CM variableslg.This is a choice of variables often advocated in
the literature. It differs gsignificantly from the above individual
particle variables (IP variables). Instead of 8N IP variables one has

8N + 8 CM variables Q¥ P% g¥ 1! which must satlsfy an algebra which
is a realization of the P01ncaré algebra when

M¥= (@aP)"+ 25 (ZaaT)™ (39
-
The most convenient choice‘is the covariant canonical realization
{2358 | {58 Tt =00 8% (40)
with all other Poisson brackets vanishing. Other realizations imply

relations between the CM variables so that not all 8N + 8 of them
are independent dynamical variables. (See the appendix of my paper
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in Nuclear Physics B112,177(1976). An example of that is the case
where one chooses for Q the Newton-Wigner position variables.
The meaning of the CM variables can be deduced from (39): Q -and
P are the CM position and momentum of the system. 33 and T,
are internal (relative) positions and momenta. (39) is the separation
of the generalized angular momentum into one of the system as a whole

and one which is the sum of the individual internal particle angular
momenta. Particle spin is here ignored.

Tn terms of these variables there is a certain arbitrariness in
choosing constraints since the mass shell is no longer accessible. A
much more serious problem, however, is the fact that these variables
lead to difficulties when N particle systems (N >2) are considered
in which the particles interact by means of separable interactions. It
does not seem possible to satisfy the cluster decomposition property
in terms of the CM wvariables. We shall return to this property later.

On the other hand, the CM variables are very satisfactory and intui-
tively desirable for bound state problems of two-body systems. Also
N-body systems can be treated this way if no scattering states are pos-
sible (nonseparable interactions). The relation between the OCM varia-
bles and the IP variables has been studied in several papers (see
e.g. M.J. King and F. Rohrlich).

6. Many-body Forces

So far no attention was paid to the first class condition (17) of
the constraints. In view of the form of the Ka , (16), this is really
a condition on the interaction functions ¢k : only those interaction
functions are permitted for which (17) holds. But what are these funct-
ions? )

For N=2 +the answer to this questions is very simple. Since one
can here always choose &, =d, =& the equation

{17{’-+¢ , p}-&»cbs =0 €41)
leads to ¥y %é - l(,_‘?éi =0 ‘ or, because of translation invariance
0%
of &, i.e. P& _ 24 one finds
4, 9.

?'%{)"1_:0 : (?:1,44)(,_; 4.1:“}1"11-) (42)

This result states that the two-body interaction function can depend
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on q1 and a4 only through

L
quzk- = 9 u 'P:P . (43)

v
where Pr is the projection orthogonal to the total momentum Pf‘,
Bv - A Ay
B = 2" (44)

.3 .
Here 'iz"’ is the Minkowski metric and PP is the unit vector

P""/«\/-P2 . (We use trace a =+ 2 ) . The functions 4) are there-~
fore scalar functions constructed from the three fourvectors qﬁ:; pf‘
D, - _
For N=3 the problem is already much more difficult. One must solve
the three equations

{P:'i- éab"’ 1{9“, Pl}"’ 4)“4- d)b"ﬁ =0 (a b ¢ = cyclic 123) (45)

for the three functions 4;‘, with dby = ¢zq_. And now one finds that
there is no nontrivial solution to this problem!

Therefore, it is necessary to extend the type of interaction funct-
ions considered. One can no longer limit oneself to two-body interact-
ions. For N=3 ' three-body interactions must be present for any non-
trivial system.

This is a feature characteristic to the formalism based on generali-
zed mass shells as first class constraints.

An explicit solution for such three-body forces was obtained by
H. SazdjiaggIk;also found a solution for the N-body system which
requires n-body forces with n = 2,3,4,... N . Earlier work on this
problem was done by S.N. Sokolovlg

Since Dr. Sazdjian will speak on his work at this conference no
further discussion of it is necessary here.

The necessity of many-body forces in direct interaction dynamics
should not be surprising. As early as 1939 Primakoff and Holstein14
showed that when retarded interactions of fields are replaced by di-
rect interactions many-~body forces arise. It is the price one pays for
restricting oneself to direct interactions.

7. The Cluster Decomposition11

Any particle dynamics which is to be physically meaningful must
satisfy the cluster property when separable interactions are involved.
A particle is subject to separable forces if these forces cease in
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the limit as that particle is removed to infinite spacelike distance
relative to all the other particles. Such forces in general admit bound
states as well as scattering states of the system.

If the particles of an N particle system interact with one another
by separable forces the interaction functions 41 must vanish asympto-
tically as the relative spacelike distances approach infinity. If the
system separates into two clusters of N/ and N” particles, N’/ «+

NV - XN
1limit

(1) the dynamics of each cluster is independent of the dynamics of

, the cluster decomposition property requires that in the

the other cluster,
(2) the dynamics of each cluster is independent of its history,
(3) the cluster decomposition is Poincaré invariant.

N
For &u_: éi;-qﬁf) separability requires, as particle a sepa-

rates,
Hiwm ¢k =0
ablr . (46a)
dim &, independent of a . (46Db)
(CRY )

The phase space r separates into two non-intersecting spaces rland
" such that

r—nmnrernr" (47)

and the Poincaré generators of the two clusters becomes additive and
commutative, (pﬂwc MP‘”} =0  , ete. The evolution operator then
also separates

Ho=H+H" (48)

where

”N

”l
H'= Z w! K, | H' = 2~ wi K (49)
1 L]

In order to satisfy requirement (2) it is necessary that H' and
H" be independent of P¥ the total momentum of the parent system

of N particles. If one uses CM variables this requirement seems
very difficult to satisfy.

Now the w, of the original (parent) system as well as the w and
w: must be Poincaré invariant and in particular translation invariant.
The ;ﬁl however, even if chosen Lorentz invariant cannot be translat-
ion invariant. It follows from (28), therefore, that both 9)&6; and
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A nmust nevertheless be translation invariant, This is a necessary
condition to satisfy (3) .

In order to satisfy (1) it is necessary that the 4h_depend only
on spacelike relative distances. Only those are affected by the limit
in (46). On the other hand, the fixations must depend on timelike
position vectors. While the ¢k depend only on qé% where L indicates
orthogonality to some timelike vector (e.g. a timelike momentum), the
)(,_ must depend on the qa” where // means a component of 4, Pbara-
lell to some timelike vector. Otherwise the fixations do not permit
elimination of the coordinate times qao .

The 1limits involved in the cluster separation affect only the qét
and does not take the qag to infinity. If particle b goes to
infinity W, would not become independent of b if it is a function
of Q” unless W, also depends on qaﬁ and in such a way that the

a" “dependence is eliminated as |q;BI_—' ® . One sees therefore that
the fixations )ﬂt must be so chosen that the resultant w, (using (28))
will be consistent with the cluster requirements. As an examp}e one
observes that the very reasonable looking fixations XQE Qa‘?" T=0
do not yield separable w, for N>2 .

8. Interactions

The above dynamics is based on the free mass shell and its modifi-
cation due to interaction. The free mass shell

P hppy +m* =0 ’ (50)

can be modified in three different ways. The best known of these is

the gauge interaction

b= br - g A

leading to
A (pr - 4 A) (py-q Ay) + = =0 (51)

The gauge functions AF- can be group valued, e.g. of the form

Y K
Ap=Z ALt gl =Cody
for a Lie group (non-abelian gauge interaction).

A second way of modifying (50) is by generalizing Minkowski space
to a Riemann space of indefinite metric ?“'—' 3?‘ yielding
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A by +m* =0 (52)

Physically this means that the particle is in a gravitational back-
ground field.

A third modification is the generalization of the mass term to a
. function of the dynamical variables

N pps + M lg.p) =0, M= w2 blg.p)  (53)

which is the form of direct interaction we used in (16).

In principle, both modifications (51) and (52) can be written in
the form (53) but the inverse is not true in general.

The relation to a gauge field theory is seen by taking for AP’
a field, Af,(x) , and specifying field equations for it that relate
it to the particles as sources. The solution of the field equations
then expresses AF’ as a functional of the particle variables which
may be very complicated and is in general nonlocal in space and time.
The question of a reduction to the form (53) then becomes a non-tri-

vial problem.

Concluding Remarks to I.

The classical relativistic constraint dynamics of particle systems
has made tremendous progress in the lagt few years. It is now on fair-
ly sound foundations and the essential features seem to be understood.
This includes in particular the cluster problem and the status of many-
body forces.

The main questions that are still not well understood are primarily
the following:

(1) The freedom available in choosing three-body intersctions when
the two~body interactions are known, is not yet fully clarified. The
same holds for n-body forces with n>»3s3.

(2) The description of spin for classical particles has not yet
been worked out.

(3) The global structure of the theory is not yet understood. To
this end a fully coordinate independent formulation must be provided
(fiber bundle language).

(4) The relation of this canonical theory to other formulations
(Lagrangian, predictive dynamics) has not yet been sufficiently cla-
rified.

But it is not too soon to begin applying the theory to various spe-
cific problems where classical particle dynamics is a valid descrip-
tion.
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IT. QUANTUM THEORY
1. Introduction

The canonical quantization of classical relativistic constraint
dynamics with direct interaction leads to a relativistic quantum dyna-
mics of directly interacting particles, This theory is intermediate
between nonrelativistic quantum mechanics and relativistic quantum
field theory: it is a relativistic quantum theory with a finite number
of degrees of freedom. Is there a consistent theory of this nature?

Knowing the classical theory one anticipates various difficulties
of which the following are representative: ,

(1) In a covariant formulation qé” and p,, will be operator
valued four-vectors. This means that in addition to the well-known
operators E; and ﬁ; we shall also have an operator of energy pao
and an operator of time qao . The latter would imply an uncertainty
relation AE-At which is independent of the position-momentum uncertain-
ty relation. A host of questions -of interpretation and measurement
theory arise here.

(2) The interaction operator ¢ (q,p) Dbecomes in the Schrddinger
representation ¢(q, i é% ) which leads to a Schr8dinger equation of
higher than second order, and in general to a quasi-differential equa-
tion.

(3) Covariance required a Hilbert space # of state vectors, FH =

= L2 ( R4N)_. What is the physical interpretation of this?

(#) The constraints which are weak equations in the classical theory
become equations of the form

vy =0

Since Ka has a continuous spectrum P#? cannot be in H . One must
use wave packets or generalize to a rigged Hilbert space. A similar
problem, but less acute is encountered in ordinary quantum mechanics.

Our attempt at a relativistic constraint quantum dynamics is less
than a year old although some important earlier work is related to it
and helped shape our thinking on this matter. In any case Wwe are far
from having answers to all the above questions. Nevertheless, important
progress has been made and we shall summarize a good part of it in the
following pages.

2. Quantization

.The heuristic process called "quantization" is essentially an educa-
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ted guess at a quantum theory whose classical limit is the given clas-
sical theory. There is no mathematical rigor in that process. Only the
limit is to be well defined mathematically. Quantization is an art.

Attempts by mathematicians to make quantization into a rigorous
procedure (geometric quantization) leads to a theory which has little
to do with the gquantum mechanics of the physicist.

In canonical quantization?o one replaces the Poisson bracket algebra
of the fundamental variables by a commutor algebra

—_ “
[qr posd=i6ay 85 (54)
with q;’, Py, self adjoint operators on ¥ = L2( R4N) . The funda-
mental dynamical equation is the generation of a trajectory by a given

K, . The latter is also a self adjoint operator now,

Koz pF+mi+ B, (3.9) (55)

with é—a being (a suitably ordered) function of the Q@ and p . This
dynamical equation thus reads

i3 (\“ ¥ (56)
d Ta !

with "H the set of 8N operators qr,..., psp . The index H
indicates that we are here in the Heisenberg picture in which all the
time dependence is in the operators, the state vectors |1L") being
time independent. The time here is a set of N parameters T, one for
each particle. Thus, we have a many-time theory, corresponding to the
classical equation (18). A single time formalism would require the w,,
(31). However, they are not necessary in a scattering theory where
only the asymptotic free states are needed.

It is conceivable that (56) cannot hold everywhere in  and we
shall be content to have it hold on a set of states PQA)that span a
subspace 25 (o’ A . That space would then be the physical Hilbert
space,

i%‘g‘ lwy = [YH,K:]\"%) (57

The Schrddinger picture is characterized by time independent operat-
ors Y S, a1 T, dependence is in the state vectors | %oy - The
transformation U([t]) , L®1=%;.., T, maps one picture on the other,

s> = U(Cz))|4y? (58)
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and one finds by standard methods that U  must satisfy
dU s
122 = K (59)
dTa - U .
Therefore the ~|ﬂ3) nust satisfy
) s
v j—-'al@s> = k,,H's> (60)

which is a set of N simultaneous differential equations for I4¢7=
=]1%(q,n,tﬂ)> . Its integrability conditions are

[ k]l =0 (61)

in which one recognizes the quantum analog of the first class constraint
condition (17).
The solution of (59) is

N - s
U(e) =T ™ (e2)

At this point the technical assumption of stability of & under the
operators Ka is necessary.

Equations (60) and (61) are the fundamental equations of the rela-
tivistic constraint quantum dynamics. In fact, egs. (60) can be regar-
ded as the relativistic generalizations of the Schrddinger equations.
We see that they are in general not of second order, as predicted in

(2) . But one notices that the difficulty anticipated in (4) did not
arise: the time derivative term permits one to have solutions |2 €

& . Physically, this means that the quantum mechanical mass
shell is not sharp but has a finite (though presumably very small)
width. This situation arises naturally in the quantization process
and has not been put in by hand.

One can show that the fundamental equations lead to a classical
limit consistent with the theory developed in I . In particular the
matrix elements of K: are constraints which vanish in the classical
limit reproducing the classical constraints.

3. Many-Time Quantum Dynamics

The relativistic Schrddinger equation (60) is not entirely new to
the physics literature. As a single T formulatiog it was proposed by
Stueckelbergl?and was later discussed by Feynman;,Schwingerl?and others.
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The work I am reporting is based on joint papers w%th L. Horwitz2o’2%ho
had recently studied (60) in the single time formulation™~?~7, Independently

22 .

Droz-Vincent“ is carrying out similar studies in a rigged Hilbert space.

The difficult set of differential equations is expected to be solva-
ble at least in a perturbation expansion. Following the well-known
techniques of quantum field theory it is thus convenient to transform

into the Dirac picture

4y = U:' 1> (63)
W (CzI) = i&. T (64)

where

K = $& +md (65)

is the unperturbed mass shell in the Schrédinger picture. One verifies
that the Dirac picture operators YD satisfy the free particle equat-
ions. Therefore the momenta Py = paS are [z] -independent and

o oD -1
A= 105 USRS U (66)
The integrability condition (61) becomes

[J‘a.khll"}) =0 (67)

The fundamental equations in the Dirac picture are the Uo trans-
forms of (60),

P> = dald> (68)

a
Their solution can be written as

where # = §aD is the interaction operator in the Dirac pict'ure.

401y = Y (C1, LoDy o) (69)

with U(Ct],[c']) a unitary operator obtained from the ¢a by integra-

tion,

U (1, fel) = 1,/.‘:?_1 (%,9,)- u«_"q" (LS R U (G, %) (70)

. N r‘.-.TN-" cN

A typical factor in this product is
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L7

G- (6.0, G Ty, 20) AT

U (t,,0;) = e"‘l‘- (71)
N #NY

+

and the symbol ( ), indicates positive T-ordering increasing from
right to left.

The integrability condition (67) permits one to prove that on |4%
the order in which the [¢] are integrated to [z] is arbitrary. It
follows that the path from [¢] to [&] in N-dimensional T -space is
arbitrary, yielding the same U([z1, Rﬂ) for any path.

The operator WU({[zl,[¢3) permits one to compute a (generalized)
Feynman propagator in this many-tlme theory. Let ’4(% |R2D) —<C1l7-\—>
then

3 (gI)= [ UELIDIg> dg'. ¢ (ghte)) (72)
with
G(4,1; ¢, [01) = L) ui(re1,IeD)l 97> (73)
the associated propagator.

These expressions and the associated space-time picture are a good
starting point for the discussion of the physical interpretation of

the theory and for an understanding of the space L2 ( RuN) . We shsall
not discuss it here.
4, Scattering Theory
In the Dirac bicture one has the asymptotic states
dime 4> = |, > (74) in
tl- -
dime V4> = o () out
x1—> +oo

The Schrddinger states then have the limits
Sim te” — U l2) ,‘\7 =0
o Wi 142

and similarly for f{t] —+ ® .
The two operators (62) and (64) permit one to define the wave ope-
rators (Mgller operators),
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S UWHz1) Us (1) = Q4 (75)

Fl-3o

which relate the Heisenberg states to the in- and out- states,

e = Quldn > = Q2 dawd (76)

As before, one can prove that the order of the N limits in (75) is
arbitrary. The existence of the limits depends on the interaction func-
tions. A sufficient condition for the existence is

! “ T 'm:r"\#e&“-o\twﬁw , Va (77)

Finally one defines the S-operator in the conventional way,
+
$=02-Q, (78)

and one finds

\‘}w&> = S\(q’m> (79)

In order to check on the cluster decomposition property one needs
the translation operators

'L{a(sa)e e‘F"s“‘ ( s:’ spacelike) . (80)
The interaction is separable if

Jie Uy (50) 3% U ) =0 (81)

siae

dis  Uyto) &L U (s1) = B, , (ab) (82)

b"”

]

where &a, is independent of b .
By means of these operators one can then prove that if two clusters
¢/ ana c” separate, the S operator factors in the limit,

g14,> — 58" 14> (83)

An important result in scattering theory is the generalization of
the Lippmann-Schwinger equation to the present theory. It takes two
alternative forms. One uses the free mass shell in the denominator
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and reads for the two-body case (without assuming Qdei)El

t o+ . 15
w, ¢ =1 - 1 _ 1 01
* k™ Yoo ™ Y i x;-ue:m,)-ee,,v Mk, (89

Here ‘l’cnk‘k'_= (J(‘k‘_l'q,no is the incident wave function and ’4::1‘*" =

= <*hkd 1[H7+ is the Heisenberg wave function involving outgoing
waves. The role of the conventional potential is here played by the
operator V (Schrddinger picture)

V= 858F+[8%%°] | (85)

The occurrence of the operator'\U: in (84) has its origin in the pos-
sibility that each particle a can evolve due to its interacting mass
shell operator Ké'# Kao without explicitly affecting the other one,

W, = 4+ ()-2) +(aP-1) (86)
.Q“:’: t‘hm Q‘K“t‘- e—éx‘:z" (86)
- ~00

Equation (84) can be made the starting point of a perturbation expansion

in ]f-u&i" .

Concluding Remarks to II.

There is increasing evidence that a consistent relativistic cone
straint quantum dynamics of N directly interacting particles does exist.
We are still far from understanding this theory conceptually but the
mathematical framework seems to have fallen into place. It now appears
that this level of theory lies intermediate between (non-relativistic)
quantum mechanics and (relativistic) quantum field theory. That means
a relativistic quantum theory with a finite number of degrees of free-
dom seems possible.

In addition to the conceptual questions various others are still
left to be studied. In partidular, one notes the following: :

(1) The theory is to be generalized to include particle spin, espe-
cially spin % . Some attempts in this direction have already been
made.,

(2) The quantum mechanical analog of the classical relation between
three-body and two-body interactions needs to be understood (and simi-
larly for n-body interactions); we have not yet explicit solutions
for interactions 63 that satisfy equation (61).

(3) Itis not clear how this theory applies to electrodynamics. How
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can quantum electrodynamics be approximated by a theory with a finite
number of degrees of freedom?24

(4) A similar question relates to quantum field theory in general .
Can pair production as well as single particle production be describ-
ed?

(5) There exists a relativistic scattering theory for multi-channel
processes (see the lecture by F. Coester) how is that theory related to
the constraint theory developed here? Can constraint quantum dynamics
be developed into a fully general multi-channel theory?

Finally, as for the classical theory it is not too early to begin
applying relativistic consfraint dynamics to various realistic problems
in the quantum domain. An excellent beginning has already been made
by the recent work of Van Alstine and Crater25<n1thequarkoniumsystems.
More applications like that are needed. They will help establish re-
lativistic constraint dynamics as an important new field of study.
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CONSTRAINT HAMILTONIAN MECHANICS
OF DIRECTLY INTERACTING RELATIVISTIC PARTICLES

I.T. Todorov% ,
Fakultst fiir Physik, Universitdt Bielefeld
D-4800 Bielefedld 1

Introduction

The relativistic dynamics of a single particle in an external field
was created -by Poincaré and Planck- in the early days of the special
theory of relativity. The theory of a finite system of interacting re-
lativistic particles -apart from some scattered and inconclusive at-
tempts in the past- is only taking shape in recent years. Not only the
road to it has been plagued with difficulties, but the very legitimacy
of the problem has been questioned on the ground that a finite system
of particles interacting "at-a-distance" (without an intermediary field)
is violating the "Nahewirkungsprinzip" which is thought to be inherent
to the theory of relativity.

If we look back to the sixties and early seventies, the situation
with the relativistic 2-body problem -to single out one specific topic-
appears rather queer. On one hand all existing allegedly field theoretic
fine structure and Lamb shift calculations use (on top of quantum elec-
trodynamics) some 2-particle equation (most efficiently, a Hamiltonian
type quasipotential equation). On the other hand, a so-called "no inter-
action theorem" was put forward (and proved), stating that a relativis-
tic canonical Hamiltonian formalism is only consistent with a free par-
ticle motion. (It brings to memory the ancient anecdote about Zeno pro-
ving the impossibility of motion and his gpponent just walking in an-
swer.)

Now we not only pretend to be moving, but we are also ready to ex-
plain why we are able to do so.

The present notes (which can be regarded as a concise version of a
more comprehensive text in preparation -see T5)) purport to give an
overall view on the constraint Hamiltonian approach to the subject

# Permanent address: Institute of Nuclear Research and Nuclear Energy,
Bulgarian Academy of Sciences, Sofia 1184, Bulgaria.
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starting with the classical relativistic mechanics of a single particle
in an external field and ending with a derivation of the fine structure
spectrum of a 2-particle bound state in quantum electrodynamics.

The reader can gef an idea about the organization of material from
the table of contents.

A note on the list of references

Although the subject matter of these notes has never been truly
fashionable the number of publication in the field is depressingly
large. (We are aware of a few hundreds of articles, a 1list of which
will appear in T5).) The references listed at the end of these notes
represent just a small section of that huge body and we have had no
trustworthy criterion in making such a selection. '

The present note aims to supply a short guide to the list of refe-
rences (in order to give ué the freedom not to interrupt too often the
systematic exposition with historical and bibliographical comments).

There have been several lines of development in relativistic particle
mechanics which now happily converge to a coherent overall picture.

The early stage of development of the subject can be traced back
from references E1), D1,2), P5), W2), H2) (see also later work V2) in
these lines as well as the review by Professor Hill at this Workshop).
Two unrelated developments in the sixties have left a lasting imprint
on the subject. One is the "no-interaction theorem" of Currie, Jordan,
Sudarshan (CJS) C4), Leutwyler L3), and Hill H3) (see also K1), M2)).
The other is the development of the quasi-potential approach by Logunov,
Tavkhelidze and others 16,7) (for later reviews, see F2), R3)).

The difficult problem of constructing separable relativistic N-parti-
cle interactions for N33 has a long history (which is reviewed in
R6), and S3) as well as in Professor Coester’s lecture at this Work-
shop). The necessity for manybody forces has been realized already in
the thirties (see P4)). A semirelativistic approximation scheme for
evaluating 3-particle interactions, which have to accompany the sum
of 2-body potentials in order to make the theory consistent, was propo-
sed by Foldy F3) (see also P2)). Landmarks in the solution of the co-
rresponding quantum mechanical problemv(using M3ller’s wave operators)
were set by Coester C1) and Sokolov S4,5). Iterative schemes (in terms
of powers of the 2-particle interaction and their derivatives) were
developed recently in S3) and B6) (see also T5)). In our presentation
in Sec. 6 we follow the work of Bidikov and the author B6).

The development of classical relativistic mechanics in the seventies
has gone in three major lines which nowadays are merging together.
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The starting point of the predictive relativistic mechanics of Bel
and others B3-5), F5), I1,2) is the picture of retarded particle in-
teraction via a classical (say; electromagnetic) field which is then
substituted by an equivalent Hamiltonian picture.

The second line, characterized by the use of a canonical phase space
Hamiltonian formalism has its origin in two sets of papers by Dirac
D2,3). It gave rise to several related developments including the CJS
work mentioned above, the work of Arens 42) and Droz-Vincent D5), as
well as the constraint Hamiltonian approach started in T4) and review-
ed in these lectures. This latter work is based on two sources: Dirac’s
"Generalized Hamiltonian dynamics" D3) and its further development
(see F1), H1)) and the local version of the quasipotential approach
developed in T3) and R3,4). (An attempt to construct classical relati-
vis tic mechanics using inspiration from the corresponding quantum theo-
ry was made earlier in F4),) For later work in this direction, see e.g.
R5), K2)*, ©2,3), M3), 18), H4), S3), T5).

The third parallel line consists in the develbpment of the singular
Lagrangian approach (see T1), D4), G1,3), L5) as well as references to
the earlier work of the Japanese school cited in the first of these
papers). In practical terms (as far as explicit examples go) this appro-
ach seems to be equivalent to a special case of the constraint Hamilto-
nian approach in which the interaction is independent of the energy
(or; more precisely, it may only depend on the total momentum P thro-
ugh the orthogonal relative distance r (given by Eq. (5.16) below)).

Our treatment of gauge dependence of canonical world lines and gauge
invariance of asymptotic results (Sec., 7) follows the work M3) .of Molot-
kov and the author. A similar result was obtained in the Lagrangian
framework in Gl).

The space-time formulation of relativistic particle dynamics in
terms of second order differential systems follows recent work by Niko-
lov (see N1)).

Recent developments of relativistic Hamiltonian (and Lagrangian)
mechanics can also be found in G2), L&), P1,3).

+) Unfortunately, it has to be noted that the lack of originality in
the first two papers in the series K2) is only matched by the lack of
references there to the author’s predecessors.
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1. Space-time formulation of relativistic particle mechanics

A world line in a space~time manifold M is a 1-dimensional (time-
like) submanifold of M , usually given by parametric equations of the

type .
xtz xk(4) p= 0.4,2,3 ;. -—eo 2t L4,

For a Galilean invariant (non-relativistic) system there is a privi-
leged choice of the evolution parameter +t , namely, the time-component
x° of the 4-vector x . It does not change under homogeneous Galilean
transformations (and, in general, only the origin of the time axis may
be shifted). For a relativistic system this is not the case: the sepa-
ration between space and time components of x depends on the choice
of the Lorentz frame (and the proper time, which is a natural evolution
parameter for a single /massive/ particle, has no universal extension
to many particle systems). This makes it desirable to have a formulat-

ion of relativistic dynamics which does not depend on the choice of +t
o)
(provided, say,that x° = %ﬁ; >0 ). (Such a "physical motivation"

should be superfluous for a geometer: by definition, a world line is

a parametrization independent object, and a theory designed to deter-
nine it (from some "initial data") should not depend in an essential
way on the evolution parameter either.)

In a Newton like formulation already the choice of initial data
poses a problem, if we insist on reparametrization invariance. Indeed,
the momentary state of a particle is conventionally given by its posi-
tion and velocity at a given time. However, the 4-velocity depends on
the choice of the evolution parameter: for t replaced by f(t)

(f = %% > 0 ) x goes into fx . The fact that under an arbitrary
(monotonous) change of +t the 4-velocity is just dilated (by a posi~
tive factor) suggests a simple way out of this difficulty. The initial
data should consist of a space-time point =x and a future pointing
tangent ray to the world line at that point. This leads us to (a slight
modification of) the mathematical notion of a (first order) different-
ial system (which assigns to each point x € M a k-dimensional sub-
space in the tangent space TXM ). In order to be able to formulate a
parametrization independent version of Newton’s second law, an exten-
sion of this concept is needed to second order systems. Such an exten-
sion has been worked out in the present context by P. Nikolov (see N1)).

In an attempt to give an idea about this approach without entering
the differential geometric subtleties inherent to it, we shall consider
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in detail the simplest case of a single particle system in an external
field.

Let M be a pseudo-Riemannian manifold of signature -+++ (whose
curvature may be physically interpreted as a manifestation of an exter-
nal gravitational field), The space of 4-velocities at a point x 1is
the future cone in the tangent space TXM consistipg of (non-zero)
4-vectors x such that x°2 |%| . The union of all these spaces (for

x varying in M L which can be regarded as a subbundle of the tangent
bundle TM, will be denoted by T M . Th? parametrization independent
concept of velocity is given by the ray [x] of all vectors of the
type Ax where x is fixed and A >0 . The bundle of all such rays
is the projectivization P(T>,M) of Ty, M . Thus we shall identify
the space of (instantaneous) states of a spinless point particle with
the 7-dimensional manifold P(T4 M) whose points in local coordinates
are given by the pairs (x, [x] ). (The notation [x] means that xt
are used as homogeneous coordinates in P(Tx7 M ).

The manifold P(Ts M) may, alternatively, be viewed as the space
of initial conditions for a (l-particle) mechanical system. In order to
introduce a parametrization independent concept of acceleration and
to have room for Newtonian type of equations of motion, we have just
to repeat the above construction taking the tangent space T P(Ts M)
and its projectivization, the 1%-dimensional space P(T P(T, M) ).

Tet T : P(T >M)—>M be the projection which makes correspond to
every point (x, [x]) of the fibre bundle P(Ty M) the point x of
the base space M , and let T~ be the corresponding tangent map

Denote by T the projective counterpart of nr ( ® maps P(T P(T , M)
into P(TyM)). A (1-dimensional) second order differential system

is defined as a section €': P(TsM)—»P(T P(TM) ) satisfying the
condition

T (ctp) = ¢ for every  yeP(THM), (1.1)

We shall demonstrate that this geometric concept provides a parame-
trization independent generalization of Newton’s equations of motion.
To this end we first introduce independent (rather than homogeneous)
coordinates ui in velocity space. We shall assume, for the sake of
definiteness, that we are dealing with a massive particle with a time
1ike world line. In this case it is convenient to use the normalized

4-velocity

AL”:

i (w*z mw ut=-1 My, 2 gr,,w') (1.2)

= -
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whose space components ui can serve as independent coordinates in
P(Tx>.M) . (More genergllyz_if a light like motion is also allowed,
one can take instead vT = ¥£ as independgnt parameters,) With this
notation we can choose (xf“? tb?; [i"’, 4L1]) as local parameters in
P(TP(T yM)) (regarding x®, u' as homogeneous coordinates in the
6-dimensional fibre). A second order differential system has a local
representation

o e mt) — (x®, a8 [S¥w) , Flxwl ),

Condition (1.1) now implies that SY should be proportional to the

4-velocity: .
SVxw = Axow %V,

Let { be an integral curve of ¢ in P(Ty M), so that

Tow? = Txu)  for all wel . (1.3)
If we introduce at this point an evolution parameter T on £ , then

[dar A_u_*] = [a&e, F] (1.4)

dt ' dt -
Eq. (1.4) implies the Newton-like equation
dut .
m(T). ==
el (1.5)

The multiplier m(Z) depends (in general) on the choice of evolution
parameter and on the definition of the force F . Eq. (1.5) can also
written in a covariant 4-dimensional form

dut _ r i z_ Vo .
m. S = F (for wm?= Gpvuhu= L) (1.6)
if we define F° from the orthogonality relation
wF = Sy wr¥'=0 (1.7

(which is a consistency condition for a4 being a normalized 4-velocity).
We can produce manifestly reparametrization invariant equations of

type (1.6) starting from an action principle with a Lagrangian which

is a homogeneous function of degreep 1 in x . An example of physi-

cal importance is provided by the Lagrangian for a massive charged

particle in an external gravitational and electromagnetic field:

L= -(w\\f:aw,tx)-a‘cf‘o'c" + e Ar(x)- %t (1.8)

The Euler-Lagrange equations of motion can in this case be written in

the form ur X

D
m (%) =— = ¢ X
™ pe " (1.9)
Dur

where u is given by 1.2) , Py = QFAV-Q,AF_ , and F¢ is the
covariant derivative:
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‘%%\.": ::—':—P-l- Y;tvluaz'y , rl‘ —- .- l"‘e( 9?1‘!’9”%8“ P?}p) (1.10)

We shall end up this section by writing down without further explana-
tion the relevant definitions in the N-partide case.

A relativistic N-particle dynamics is defined by the commutative dia~
N
gram (’P(TP (Ts H)))N (e (TyM))
a'i L IR R.a=1
T
(?(1 My —

(1.11)

where @ is an involutive section. (A section & is called involutive
if for any pair of vector fields 1 ’ X2 the condition X (x)e @
(a=1 ,2) implies [Xl,Xé]e ¢ . According to Frobenious theorem the

differential system ¢ is integrable iff it is involutive. Eq. (1.11)
includes the requirement that 6 lies in the domain of the "projecti-
ve tangent map" T,) The restriction @) of the differential system
¢ to P(T Mk) satisfies all conditions of a l-particle dynamics. The
"external force" F, , acting on the k-th particle, will, in general,
appear as a function of the coordinates and veélocities of all parti-
cles. v
We now proceed to the discussion of symmetry. Let G be a trans-
formation group of M whose induced action (Vg’ ﬁé; geG) on
(P(T,M), P(T P(T,M))) 1is a bundle homomorphism; in other words, if
T is the projection in the fibre bundle P(T P(T,M)—vP(T,M) then
Wev, - vg-?‘( .
We say that G is a symmetry group of ¢ (regarded as a section in
the above fibre bundle) if

-

V3° ¢ . V W = T, aeb ,%e’P(T>M), (1.12)

The notion extends in an obvious way to the N-particle case.

The largest symmetry of M which naturally appears in our frame-
work is the conformal group locally isomorphic to SOO(D,2) . The lar~-
gest symmetry group for a particle with a fixed positive mass is the
Poincard group whose connected component will Be denoted by QE‘.

We shall illustrate here the implication of Poincaré invariance on
the example of a l-particle system in D-dimensional space-time, assuming
the standard (affine) action of qu on M for which

V@A) : (x,[%]) —> (Ax+a, [A%]), | (1.13)

We shall consider the (2D-1) dimensional open submanifold P(T M) of
P(Ts M) defined as the set of pairs (x, [X] ) for which =x is
(positive) timelike. It is a homogeneous space of 91' with stability
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group of a point isomorphic to S0(D-1) .

For space-time dimension D> 2 +this "little group" acts nontrivia-
11y on the accelerations and hence on the forces leaving no non-vanish-
ing (D-1)-vector invariant. Consequently, the condition of Poincaré
invariance of the l-particle dynamics leads to free motion (F=0) .

For D=2 , however, the little group 8S0(1l) is itself trivial and im-
poses no extra condition on the force so that the above result does
not hold. Indeed, there exists a non-trivial Poincaré invariant l-par-
ticle dynamics in 2-dimensional space-time. Using the proper time va-
riable we can write the QET-invariant equation

Hy= K Euu” where MP+dzMFU A =0 5 Ep=-fo (F€%)=d. (1.14)

Its solution satisfying the initial condition vr:(ul/uo) L;=o = the
is u° = ch (X +ktT), ul = sh (+KT) , The particle world line is
in this case a branch of a hyperbola with isotropic asymptots.

Note, however, that the system (1.14) is not invariant under space
reflections. There is in fact no non-trivial (smooth) l=-particle dyna-
mical system, invariant under the orthochronous Poincaré group ﬁbﬁ
(The condition of smoothness is important, since otherwise the system

governed by the equation
’“",¢= }DEFV -m‘ym,.d{u)' , /ﬂ)O

provides an example of a gpr—invariant system with nonstraight world
lines for D=2).

Going back to higher space-time dimensions (including the realistic
case D=4 ) we conjecture that there exist nontrivial Poincaré inva-
riant Neparticle dynamics for N22 since the stability subgroup of
almost all points of (P(T,M)Y is trivial.

(This conjecture will be further justified in Sec. 7C.)

We omit here the discussion of spin (a l-spinning-particle system
in an external field is recently studied in v1)*t ); the phase space
of a free classical spinning particle is described in Sec., 3 .

+) Note that the authors of V1) use the term "chronometric invariance"
for reparametrization invariance.
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2. Hamiltonian constraint for a charged spinless particle in an external
field

The idea behind the constraint Hamiltonian approach to relativistic
particle dynamics is best illustrated by the simple example of a charged
particle in an external field.

We start with an auxiliary 8-dimensional "large phase space"

I = T*M where M is a (4~dimensional pseudo-Riemannian manifold of

signature (~+++) whose metric tensor can be regarded as describing an
external gravitational field. The cotangent bundle+) T has a natural
symplectic structure, given by the 2-form

w= d'x"/\alpr, (2.1)

or, equivalently by the canonical Poisson bracket relations
fxr i = 0 = dpu py] i Axpy = 85 (2.2)

It turns out that the constraint which allows to express the particle
energy E = -Po as a function of its 3-momentum and the external
field also determines the equations of motion. We can identify the
(generalized) Hamiltonian with the constraint

W= Hip, Aid) = 2]mm + ¢ (peeAd) (ped)] =0 (1592, 5)

The weak equality sign (=) indicates that, in evaluating Poisson
brackets, x and p should be regarded as independent variables and
_the constraint (2.3) should only be applied after performing all dif.

ferentiations. The positive factor A , wWhich is allowed to depend
on the point in phase space, plays the role of a lLagrange multiplier
and is related to the choice of evolution (or "time") parameter.

Indeed, the Hamiltonian equations of motion for "x ,

X% = u :?—H— 2 (nd -
Xt= {x* HY Son AgM (py-e Ay, (2.4)
show that a change in A is equivalent to a change in the time scale.
For a positive mass m it follows from (2.3) (2.4) that A is propor-
tional to the invariant length of the 4-velocity:

+) A concise and readable exposition of the basic prerequisites of
symplectic geometry is contained in some 75 pages of the excellent
treatise by Treves T6). An even shorter summary (of what is needed
for reading the present notes) is given in the first chapter of T5).
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*tg ?”v ir;},":—ﬁzm’- » (2.5)

The reparametrization invariance of space-time observables (such as

the particle world line or the 7-dimensional instantaneous state of a

particle, introduced in the preceding section) is expressed in the

Hamiltonian picture as their independence of the Lagrange multiplier
A,

Note that the constraint (2.3) was introduced by Dirac D1) in the.
early forties; he was the first to realize that a constraint of this
type not only excludes extra variables but also defines the dynamics.

The A independence of observables indicates that the physics of
the problem is completely characterized by giving a (7-dimensional)
surface

M = U“L1 (m, A(x)) = .
=lixp) e T*M; s g"v(p,‘-elp)(pv-éAv)'—‘O, p-eA°>0 § (2.6)

in T , the generalized l-particle mass-shell. The inequality po-eA°> 0

in (2.6) is necessary and sufficient in order to have a positive time-
like or light-like velocity x (for m¥o , A>0 , as assumed).

A straightforward way to establisha correspondence between the space
time picture of Sec. 1 and the present constraint Hamiltonian descrip-
tion of a l-particle system is provided by the Legendre transformation

Hipo (v0) — Lixx) = px-Hipo (2.7

where p is regarded as a function of the positions and velocities,
defined (implicitely) by the Hamiltonian equation x = 2H . For H

given by (2.3) we find P
- ) Y
Pp= ¢ AL + T G t0-R (2.8a)
= 4 PV Aty ent 2.
L= 25 Guio *% - gmtees Autx) (2.8b)
For a positive mass particle the Lagrange multiplier A can be exclu-
ded from the constraint equation g%f = 0 (which coincides with (2.5));

the resulting Lagrangian
L=-my-%% +exA ' (2.9)

coincides with Eq. (1.9) of the preceding section (and leads to the
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same reparametrization invariant equations of motion).

Remark. There is a freedom in the definition of the nonconserved inter-
acting particle momentum and the corresponding symplectic structure.

We have chosen bto describe the interaction of a charged particle with
an external electromagnetic field by "deforming" the mass shell. The
same physics can be described by a deformation of the canonical Poisson
bracket structure (keeping the mass shell intact). Indeed, introducing
the generalized momentum T = p - eA, we can rewrite the Hamiltonian
constraint (2.%) in an A-independent form,

H= % (m2 +¢}r“'1tr'nv) = 0. (2.10)

The interaction with the electromagnetic field then reappears in the
Poisson brackets among the generalized momenta:

e, th=-e ({FP'AV}*'{AP-F'}) =ef, ('F,‘.,=9(..A,—9,Ar‘). (2.11)

It corresponds to the symplectic form

w = clk."Ael‘lTr‘ - —ez- _'F,wlx) A;\ff‘/\d'x" . (2.12)
We leave it to the reader to verify that the Hamiltonian (2.10) and
the Poisson brackets (2.11) lead to the same equations of motion (1.10)

(for the =x’s ) as before.

%. The phase space of a classical gpinning particle

The large phase space r:+ of a classical spinning particle will
be identified with a 10 dimensional symplectic submanifold of the 14
dimensional vector space 324 spanned by the space-time coordinates
x® and the Poincaré generators p, and JP’ which satisfy the stan-
dard (canonical) Poisson bracket relations

a1 = 0= {p.. po} ; ixt pv]= 8% (3.1a)
(30 S -y 5 AT, mi= ey ~Bape (3.10)

{Tea 7,«‘) = 7‘}‘ Tav =M 3:\'»« = Tap Tev + Tay J;p- . (3.1c)

We shall define the mass-spin shellblguc E+ of a free relativistic
particle of mass myo and spin s»o as a 9-dimensional Poincaré and
space reflection invariant submanifold of the 12-dimensional surface
];S*c L given by the Casimir constraints
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W+ prs =0 . (3.2a)
We have
mt+ p= =0 ,  $°>0 (3.2b)

W being the Pauli-Lubanski vector

Weo % €pn T 5 (£ y,=1)  (3.30)
W= V- Lprg, s (3.3b)
where
Spw=Tw-Lu Ly = Xp = vy (3.4a)
Vo= 8.8 . (3.4D)

The three additional relations will be derived from the following re-~
qQuirement.
Introducing the Hamiltonian constraint

He Domeepd s 22 (Wi pred) ~ 0 (3.5)

where )1 and ‘19 are arbitrary Lagrange multipliers, we demand that
the particle world line on ‘/‘ms is independent of .21 and 22 . Since
for )2=0 we have x = {x,H} = 21 p , it follows that the vectors

x and p should be colinear (i.e. [x] = [p]) for any 11 ,,12 .
The necessary and sufficient condition for such a "gauge invariance"
of world lines is

{x W)™ Cp (i.e. {x, W} l)‘lm:: Cp ). (3.6)

It turns out that this requirement, together with the condition of
space reflection invariance determines the mass-spin shell completely.
Let ﬁ&) be the dual tensor to S

*sz= i‘ € pv gv. (3.7a)

Then the J[(E,d',’) Casimir operators
v §'= - 14, *3r i Lage (3.7)

have zero Poisson brackets with all dynamical variables (i.e, with all
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functions on 75_4) .

Comment. The existence of a non-trivial centre of the Lie algebra of
Poisson brackets on qu (consisting of all/smooth/functions of the
variables (3.7b)) indicates that CEL_ is not a symplectic manifold,
More precisely, there is no symplectic form on :E; which corresponds
“to the Poisson brackets (3.1).

According to (3.3), (3.4), (3.1) Eq. (3.6) implies

"~
Ks" Lo ‘IPV . (308)
In order to exploit Eq. (3.8) we shall establish the identity

*gArg, = S *g, = L *g¥rg . s, (3.9)

To this end we shall use the fact that for every bivector there exists

an (orthonormal) basis (e°, el, e2, N ) in Minkowski space such that’

- 1 3 3
Sw=foa(ene] ~esel) + fis (eze} - e} e?) (3.10a)
and hence,
X - 2
Sw= folep e} -esed) -Lalecef- epel) (3.10b)

¥ g, = Ao le'rel e red s ey - erel) = fifaSl L (3.10)

We deduce Eq. (3.9). Multiplying both sides of (3.8) by *Sva and using

(3.9), we find
LrgRg, N, ~ oW,

Introducing the pseudoscalar ¥ vy
p
& 28, = bt (3.12a)
and using the equation V2== Clp2 and the relation (3.3) we deduce that

G, =-¢y*s* , 'Z,L S‘M,S"" =~ (4-§Ys?, (3.12b)

+) See, e.g., T6) Vol. II Sec. VII.1l. corollary 1.5 (p.351).
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Thus we end up with the constraint

V, +4W, % 0. (3.13)
Finally, invariance under spacevreflections implies

y=0 = *s*g,, : (3.14)
and hence

Lgrg,, = s? (3.15)

Ve =8.p" =0 - (5.16)

These are the additional constraints which complete the definition of
Jtms' (Note that only three of the four constraints (3.16) are inde~
pendent, because of the strong equation pV=0). The existence of a non~
trivial solution p of the system of equations (3.16) implies the

vanishing of the determinant of the matrix (Sﬂp)

dol-(sru) = (S0 Sas +SoSs, + SaSi)’= (7"-@'« )*%0 . (3.17)

Hence Eq. (3.14) is a consequence of the constraints (3.16) (a fact
which also follows from (3.9) ).
For p2< 0 the rank of the matrix of Poisson brackets

e Vi=428,+ £V -4V = p2 8, (3.18)

is 2(the constraint (3.14) being first class). Eq. (3.14) (or (3.17))
implies that SP“ is a decomposable bivector. The constraints (3.16)
can be solved by writing

WMWEV

s!ﬂ = exﬁr\l ‘1’; (3-193)
or,equivalently,
P *% = W py -Wypp . (3.19b)
For ‘SP' given by (3.19a) the product
Gt = 4 st g, (3.20a)
is a 2-dimensional projection operator:
r WV,
G, = 8 - B - (3.200)

=CW) . It is straightforward to verify that

(so that &p =0
. (8™g,, - *82*g,,) =8 .

> 1

w0
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We are now ready to define the 10 dimensional symplectic manifold
n: which plays the role of phase space of a "conformal particle" of
spin s and positive energy, but unrestricted (positive) mass:

=lxp. 80T, ; =0, +4,8"=5, P°>’ﬁ”= (3.21a)
=d(x pWIeR"; pW=0, Whushpt=0 , pe>lplly . (3.210)

According to (3.18) the definition (3.21a) of f:* involves a pair of
second class constraints. The bracket structure on r:* is obtained
by a modification of the original Poisson brackets due to Dirac.

Let [ be the 12-dimensional submanifold of :r obtained by im-
posing the first class constraints (3.14) and (3. 15) and let r; r‘+

The Dirac brackets {f,g}* are characterized by the following require-
ments (see D3) H1) ).

(a) They have the algebraic properties of a commutator and satisfy
the Leibniz rule for differentiation:

{f.9hY, = a4bhl, + Lilaly

(b) The constraints (in our case (3.16) ) have zero Dirac brackets
with any dynamical variable:

Y%y, =0. (3.22)

(¢) If f is an invariant observable on r’ (i.e. if it has weakly
vanishing Poisson brackets with the constralnts), then its Dirac brac-
kets with any dynamical variable coincide with the corresponding Pois-~
son bracket in [' :

UWi=0 = {497, ®ifel. (3.23)

These conditions determine the Dirac brackets uniquely. In order to
construct {f,gﬂ* in the case at hand, we observe that according to
(3.18) and (3.20)

gr
P‘l sL

It is now a simple exercise to verify that the brackets

‘{* %3 = ‘\!%5 + {-f-vt"} W" 1.} (%.24)

{VA.V\;} ~ GKV
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satisfy all requirements (a-~c) of the definition of Dirac brackets.

Since the Poincaré generators are invariant observables (in the sen-
se of condition (c¢) their Dirac brackets with any dynamical variable
coincide with their Poisson brackets (see (3.1) ). For the Dirac brac-
kets of xMand 8", on the other hand, we find

'(V
feney, = 22 (3.25)
{22 gy, » _‘-"1(?»3’“’_ pYSAL): (3.26)

{gﬂl gpvit = Tla.r g;\v "T[:.v g;\'q. +T[;w S*‘)" —-“A"’ sgv (3 .27)

T[,.v = ?Fv_ 1%—:—" . . (3.28)

Summarizing the results of this section we would like to stress the
following point. The assumption about gauge invariance of world lines
(expressed by Eq. (3.6) ) has led us to the constraints (3.16) which
imply that the position observables of a spinning particle cannot be
canonical (their brackets being instead given by (3.25)), This property
of physical position variables has first been pointed out by Prjce in
1948 (see P5) ).

For other work on relativistic spinning particles see, e.g. W1).

4, Generalized N-particle mass shell s

4A, Definition. The fibre bundle M — Tk

The large phase space | "of a system of N (spinless) particles
is taken as the direct product of single particle phase spaces of Sec.

2 r.»_—_-.\"“x\"zx...xl",,, .

It is equipped with the (Poincaré invariant) symplectic form
N »
w = Z Wy = Z d%: AAP"\"' . (4.1)
a=1 a=4

The generalized N-particle mass shell is defined as a 7 N-dimensional

connected Poincaré invariant submanifold M, of "N with the properties
listed below.

(1) In any Lorentz frame the surface ft is locally given by N ca-
nonical equations of the form

(fa.c = Aa(f},---:tﬂ L ITSPREEY qw-an)’*: =0 ; a=4-,N, (4.2)

Here the relative co-ordinates Qgp = Q=Q, 2aTe required to be space-
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like

4 >0 for  4ga<b 4N (4.3)

while the total momentum

P- ¥ e ()

a»4

is assumed to be positive time-like:

- ‘Pt'—'- Ppl.— 2?—._—’ w?_>0 , ?0 (RS ; h‘—) >0 . (4.5)

(ii) The equations defining /( are compatible with respect to the
Poisson bracket structure on [N :

_he  0ha
04: ’}1.,,
(In the terminology of Dirac, @f satisfying this property are called

{‘e:«‘ph "La\lﬂo.s =0 . (4.8)

first class constraints,) To be precise, we shall adopt the following

stronger requirement (whose formulation makes use of a more sophisti-
cated mathematical language).

Let Xer "’bc be the set of all vectors tangent to M , on which the
restriction Wiy, of the symplectic form (4.1) vanishes. (If X is given
locally by the set of equations o= O, a =1,..., N, then Ker @y
is generated by the Liouville operators

W D e 2 -
Yo Z‘ (')Ps ’Bq.n. - '3%:;5\;. o a=deou N (4.7

also called Hamiltonian vector fields,) We assume that it is an N-dimen-

L

sional integrable vector sub-bundle+) of the tangent bundle TM, , and
the foliation

. )
M — r; = /éu”QJut (4.8)

is a (locally trivial) fibre bundle. The 6 N-dimensional base space
of this fibre bundle is the (gauge invariant!) physical phase space.

+) A vector sub-bundle v_of a tangent bundle is integrable if the com-
mutator [X Y] of any two sectidns of ¥ is agaln a section of ¥V .
If A is glven by the first class constraints E) =0, then the points
b eS of [; can be identified with the N—dlmens1ona 1ntegral surfaces
Y= ran .y ) of the system of partisl differential equations _I~—

qronl‘t. ¥Ga
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(iii) In order to have a standard scattering theory we require a
separability (or cluster decomposition) property which says, in a phy-
sical 1anguage; that clusters of particles separated by large space-

like intervals do not interact. We shall not attempt to give the most
general geometric formulation of this assumption but will just note
that it implies, in particular,

dim. he = Vma + E:‘ (%#.9)

’hﬂa
whenever the constraints (4.2) are defined globally (ma being the mass
of particle a ) '

Comments and remarks

1) It should be stressed that we define & relativistic Hamiltonian sys-
tem by the surfacek/i (and the form @ ) and not by the specific
(local) equations which describe A . Indeed, the same surface can be
given in terms of different sets of constraints and that should not
affect the physics. We shall actually exploit the freedom in writing
down the equations for M in various ways, depending on the problem we
are dealing with. For the general discussion of this section and for
comparison with the Curie-Jordan~Sudarshan (CJS) approach C4) (see
Sec; 7B below), it is convenient to use the set (4.2) of equatibns sol-
ved with respect to the particles’ energies. It has the drawback, how-
ever, of not being manifestly Lorentz invariant. (It can be made mani-
festly Euclidean /and time-translation/ invariant by assuming that the
functions %ﬁ'only depend on the scalar products of their 3-dimensional
vector arguments,) In order to ensure the assumed Lorentz invariance
of M we have to demand the (weak) vanishing of the Poisson brackets

of @f with the Lorentz boosts Joi = =J%%  where

Y= Z: CIENEL WS N (4.10)

This leads to a set of (strong) non-linear partial differential equat-

ions for the functions ha :

N .
g(g‘:’;—q}ﬁarz% “%)Ab bo=0  (411)

(In the canonical gauge, in which all 44 are equal /see Eq. (&4.14)
below/, the second term under the summation sign vanishes). In descri~-
bing the set of admissible 2-particle constraints (Sec. 54) we shall
use instead a manifestly covariant form of (Pa .



231

2) In the 2-particle case we add the condition
’_PP,_<O , a=A2

(meaning that particle energies are positive in the centre of mass fra-
me) to the inequalities (#.5) that determine the range of particle mo-
menta on M .

3) The strong equation (4.6) is a consequence of the weak equality
RO AL X (=N-f‘*?¢}in) for tfac' given by the canonical expres-
sion (4.2) . Our second requirement ensures the reparametrization in-
variance of the theory (which involves, & priori, an N-dimensional ma-
nifold of evolution parameters).

4) The qualification. "local" concerning the canonical equations of
the constraints means that we would not like to exclude g priori
the possibility that pao are multivalued functions of the remaining

variables.

5) Theories in which only conditions (i) and (ii) (but not necessarily
(iii))are required and which give room to confining potentials (e.g.,

of the type studied in I4) can, of course, also be considered. As alrea-

dy stated, the separability requirement (iii) is only needed to ensure

the existence of scattering states and of an S-matrix. In particular,

it will not be used in our discussion of gauge dependence of particle

world lines (see Sec. 7).

6) If we identify physics with particle world lines and associated
asymptotic representations of the Poincaré group (but regard the
choice of relative momenta in the interaction region as a matter of
convention), then different submanifolds M of " may correspond to
physically equivalent dynsmics. Two generalized mass shells M and i[
are considered as physically equivalent if for any fixed choice of the
Hamiltonian H = Z; Ao they lead to the same world lines for the same
initial conditions, and if, in addition, they give rise to the same

realization of the Poincaré group. If the mass shell /{ is separable
(that is, if requirement (iii) takes place) then we demand that M is
also separable and that the difference of the corresponding canonical
constraints @f—é}’vanishes for i g~ ®. A family of physically
equivalent generalized mass shells is obtained by applying to a given
M all canonical transformations of the type

40> Ta=4a . Pa—Fa =1,¢+7??~F(§4;,...,;.,4~:,,), (4.12)

Because of the Poincaré invariance of F +the generators 6f the Poinca-
ré group do not change under a canonical transformation:
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PeTpcZ fa s TUL - b S E IR -RR.
It can be proved that locally the transformations of type (4.12) are
the most general ones with all these properties. If, in addition,

F-»0 and '37 —» 0 for Qg = ® then the asymptotic momenta also
coincide: ﬁg‘k = p;’ .-In the Lagrangian picture a transformation
of the form (4.12) corresponds to the addition of a total time deri-
vative to the Lagrangian.

7) A generalization of the above scheme is also possible, which inclu-
des manifolds M with a boundary. An example of this type is the
elastic scattering of rigid balls (see M3) ). Singular potentials with
singularities on lower dimensional manifolds (like the Coulomb potent-.
ial, considered in Sec. 5B) are included in our scheme. The singulari-
ties of the functions h, (or §,) have to be excluded from M (which
is not assumed to be a closed manifold). In particular, Eq. (4.3) ex~
cludes coinciding points+) from M (a, # q, for a£ b). Unphysical
(say, strong attractive) singularities are automatically discarded

by the integrability condition involved in assumption (ii).

4B. Gauges and Hamiltonians

A Hamiltonian H of an N-particle system is defined as a linear
combination of the constraints Qf‘ with positive ( {-dependent) coef~
ficients ("Lagrange multipliers"). The Lagrange multipliers can be
determined up to an overall factor by giving N-1 gauge conditions

(whose physical role is to pick up an equal time surface in M ) and
demanding that they have (weakly) vanishing Poisson brackets with the
Hamiltonian.

It will be sufficient for our purposes to consider gauge conditions
of the type

MGy, =0 Asach < (4.13)

where n is a time-like vector; for N=2 we shall assume n to have
zero Poisson brackets with a=qyo (and thus it will only be allowed

to depend on the total momentum P in that case). If n is a constant
vector then we can choose the Lorentz frame in such a way that the time
axis points along n , so that conditions (4.13) assume the form

+) Such an assumption is Jjustified because the known physical interac-
tions (like electromagnetic and gravitational) are singular for
coinciding. arguments. One can, however, consider & more general sche-
me as well,in which the inequalities (4.3) do not take place (see M3).
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4:5 =0 ' ab=4,...MN, (4.14)

3

The most general Hamiltonian constraint is then proportional to the
sum Hc of canonical constraints:

N A
¢ = _ _
H¢= 2~ 9,6 = bh-P° (»vo) where L—ZL . (#.15)
a=1{ e={
The remaining freedom is fixed by the choice of the time scale. The
Hamiltonian Hc corresponds, in particular, to an evolution parameter
t equal (up to a common additive constant) to the zeroth component

of each of the position 4-vectors:
£-t° = %: =...= q_: (4.16)

Indeed, by definition, t is an evolution parameter, corresponding to
a Hamiltonian H , if for any dynamical variable f we have

af _
St "“‘H}' ‘
Tor H = B® and £ = q% we find (according to (4.2) and (4.15)

43;:____ «q_:'Hck = )\q:‘_?o} = ,,,loo =4 (/-l-.l'?)

so that q% =t + Ca . Finally, the constants of the motion Ca have
to be equal because of (4.14). (Note that a more general gauge condit-
ion of the type ng = cab # O 1is excluded by the requirement that
the vectors gq,, are space-like on M)

Thus the gauge is fixed by giving the equal time surface (of type
(4.13) ), which specifies the relative gauge, and the time scale (an

example of which is provided, say, by the first equation (4.16) ). We
shall say that a dynamical variable f is an observable, if its time
evolution is independent of the choice of relative gauge, i.e., if

,us‘ H™} = Qe {4, 8¢} for {mq“h H"l=0 . (4.18)

It is easily proved that f is an observable, if its Poisson brackets
with the difference

‘(’a""(’a:{ (o) az=4,...,N (4.19)

vanish (weakly).
A gauge invariant observable is an observable which is at the same

time a constant of the motion. The generators of the Poincaré group
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PP- and Jpo are always gauge invariant observables (because of the
assumed Poincaré invariance of M. ).
In geometric language a gauge specifies for each value of the evo-

lution parameter a séction of the fibre bundle A—» [, (4.8).

5. Admissible two-particle interactions

BA, Manifestly invariant compatible constraints for N=2

In order to exhibit a class of generalized 2-particle mass shells
it is useful to take Lorentz invariance explicitely into account and
to look for a pair of manifestly Poincaré invariant constraints

Yo = L—(Mf'-\-{,:) +d, %0 , a=d2 (5.1)

satisfying the compatibility condition

le, Y=o (5.2)

Let us first work out some 2-particle kinematics.
We define the relative momentum

P == pupe purpa=4) (5.3)

requiring that
@=Bp = & (mP+pt-md-pf). (5.4)

Taking P and p as independent variables, we can write Py and P
in the form

b= }“P... P N =14;1>-P . (5.5)

Tnserting (5.5) into (5.4) we find that

2 2 2 2
F‘_FL-.:_"&_:_"& so that = 1 t_.v_".!__'m_':.

Wl. 2 rh?—- Z LW - (5.8)

The compatibility condition (5.2) becomes more tractable in terms of
the relative co-ordinates o

q- - q-q "'q-q_, : (5.7)
and p , and the following linear combinations of the original cons-
traints:

Q-4 =@ +D (x0) 3=¢‘;¢\>,_ (q=T) (5.8)
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H= fog + iy, = ;'_‘ (p2- A%wr)) + & o) ; ¢=|hd>4+y.¢,_ (5.9)
where

2 1 2
Amw) = -‘,—M)-‘[w"- 2 (ME+mP)WE + (M,,"—'m,";)] (5.10)
is the value of the relative momentum square on the free 2-particle
mass shell. Inserting Ql = H+ J(p+D) and (P2 = H- J(¢+D) in
Eq. (5.2), we find .

= =.p. 2 2D ~ .
10, ={yp+D, HY=-2 ,3%4 b 52 +1{D. ¢} =0, (5.11)

For given D the corresponding strong equation can be used to determi-
ne the general admissible form of the interaction function ¢ . (It is

a first order linear partial differential equation for ¢ , whose so-
lution involves a functional freedom.) For most of these lectures we
shall consider the simple special case in which '

-5 = .29
':D-D = 26—4—— . (5-12)

The last equation is satisfied by any function <b which depends on q
through '

ql= 9+ (q.i)f where §=—,,;,: P (?z= ’L) . (5.13)

The solution thus obtained is general enough to accomodate (in its
quantized version, including spin) the quasipotential equations con-
sidered so far (see, for a review, R4), and Sec. 8 of these notes).
A special solution with DZO is given by Eq. (7.1) below.

Remarks

1) The functions 4L in the constraints (5.1) are not fixed uniquelly
by the surface X even if we assume that they go to zero for large
|ql| . This is clear from the example of the constraints

0= 4 (mf+pd) +00Q0) (m%g3) 5 Qo= Llmi+pd)+pulql) (mi+pl)
where f\*fz (and 1:&12 fa = 0 ) which describe the free particle mass
shell in dnguise.‘In order to make the separation of the interaction
term in (5.1) unique we shall assume that ¢a may only depend on the
relative momentum p (4.22) through the angular momentum

0% £ (afp T VIOV T W PR WS SRR
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apart from a possible linear dependence in pq . Under this assumption
the relevant (Poincaré invariant) solution of (4.31) can be written in
the form

¢=(d = 2)A(riw, t) + $9 Blriw, ¢) (5.15)

where
r=lg,0 = {ors q". (5.16)

Note that in the examples of Secs. 5B and 8C we deal with a still
simpler interaction term

d=Prw) . (5.17)

2) The requirement (i) of Sec. 4A, which asserts the existence of the
canonical form (4.2) of the constraints, sets an additional res-
triction on ¢a :

d=ald(%%‘;)>o ror P> . (5.18)

(The sign of the determinant is chosen to fit the free-particle case
and hence the limit T —»® ; it cannot change with r since d
should not vanish anywhere.) In the special case when ¢1; ¢2= ¢ has
the form (5.17) Eq. (5.18) gives

05 0 )
pope- 22 >0 (5.19)
where nd b »
20 _ p°20 _ 14 0 2
op° ‘P oW wr i ’—5?"

Going to the centre of mass frame we find, in particular (for large

T ),

fepa >0 or wr> mE-mi) ( ice Ppe 40) . (5.20)

These inequalities are, however, not automatic for the bounded motion
(for which one cannot go to the large r 1imit).

5B, Relativistic reduced mass and minimal Coulomb interaction

One qualitative reason why a 2-particle system is so much simpler
to study (even in the non-relativistic case) than a system of N in-
teracting particles for N3 , is displayed by the possibility of
reducing the study of two spinless particles to an effective one-parti-
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cle problem in an external field. (There does not seem to be any com-
pafable reduction for the 3-particle problem,)

The key notion in studying the relative motion of a non-relativistic
2-particle system is the concept of a reduced mass m , satisfying the
equation

’W\M = My My (5.21)

where M is the total mass of the 2-particle system (M = my + my
for non-relativistic particles). We shall extend this concept to the
relativistic case by simply replacing M with the relativistic total
mass vV:VEE& « Thus we come to the notion of a relativistic reduced
mass, m_ , given by

M4M1—

m, =
v w

(5.22)

We shall identify the remaining characteristics of the effective
particle and of the "external field" in the centre of mass frame (the
effective "external source" being at rest just in that frame). We shall
work with the special 2-particle constraints (5.12) (5.17) throughout
this section so that we shall have, in particular,

Y =pY=o0 . (5.23)

Note first of all that the relative momentum p and the co-ordinate
ql.have zero time components in the rest frame of P :

p=(0,p) . q=(0,r) for P=(w;0) . (5.28)

Recalling that the on-shell value of p2 is b2(w) (5.10) we define
the energy E of the effective particle of mass m, and 3-momentum

B by

E=\md+ Koy = = (Wmtmd) >0 (5.25)

(Note that the positivity of the right-hand side of (5.25), which we
assume, is a stronger restriction on the value of w than the require-
ment (5.20) of the preceding subsection).

It is easily verified that the free effective particle constraint

Ho= § (mJ s €2) [= £ (po-peo)] wo (5.26)

preserves the Markov-Yukawa gauge condition
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?q‘ =0 . (5.27)

Consider a system of two charged particles (of charges e and
es ). In the nonrelativistic limit their interaction is described by
the Coulomb potential

. o
Vir) = ‘:ne: ) (5.28)

A naive way to combine (6.6) and (6.8) is to try a minimal type "rela-
tivistic Coulomb interaction" by writing down the Hamiltonian constra-

Hyo= 3 [meept-(E-0* )0 (5.29)

Surprising as it may look, it turns out that this expression leads

int

indeed to correct results provided that r is not too small. Actually,
as it will be shown in Sec. 8C in the framework of the quasipotential
approach to guantum electrodynamics, the electromagnetic interaction
"Hamiltonian" Hem , derived from the l-photon exchange dlagr;?12dif-

fers from HC g1 ©Only by a term of the order of (el 2) (wr for

r>o (it comes from the square of the vector potential):

Hon = Heat® o Vi & (0 A9)+EV 4V o -4) %0 . 550

Twire qwtir*

Although the addition to Hcoul is negligible classically at large
distances and leads to higher order corrections to the guantum energy
levels if treated perturbatively, it affects in a qualitative way the

short distance behaviour of the interaction function

¢lm= EVe+ Vz( zrz-A) = ¢caue +
%M=H“M-M‘=EV—éVz

where o/ is the fine structure constant:
1e ¢,
= —_ (5.32)
4T _
Nl
Indeed, the leading singularity of ¢bou1 for small r , - g is
attractive and presents a problem for small angular momentum (€< o )

L2
The correction d%ﬁ'¢ﬁm£(' ?;FFQ’ be;ng dominant at small distances and
repulsive, makes the entire interaction term bounded below. It may also

T?_w'-r“f (5.31)

lead to new (non-perturbative) physical results in problems in which
short distances become relevant (cf. B2) ).
For fixed w the constraint
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H = %(fz—ilc\u)) + & (rw) (5.33)

has the same structure (in particular, the same p-dependence) as a non-
relativistic Hamiltonian . This observation allows to extend known non-
relativistic results, including exact solutions, to the relativistic

case.

6. Relativistic addition of interactions

6A. The problem

For a non-relativistic N-particle system an interaction that only
involves two body forces is defined as a simple sum of 2-particle po-
tentials. For a relativistic system such a simple minded procedure runs
into conflict with compatibility. For instance 3-particle constraints
of the form '

= %. (fm;"wf:') +¢n+¢’s‘- 0 and cyclic permutations

where

LY A
43“:' PlranWay) , Yo =qm, +('ﬂ.,‘{.¢;)z v Tan= pat o= wWap By (641D

(as proposed in C2) ) are not first class. One has to add appropriate
many particle interactions to the sum of 2-body forces in order to
obtain a consistent relativistic theory. We shall present two types
of solutions to this problem.

First, we shall work out (in Sec. 6B) an extension to the (classical)
generalized mass shell framework of Sokolov’s (quantum mechanicél) pro-
cedure for relativistic addition of interactions (see S4), S6) ). As
the argument is not very constructive (since it assumes the knowledge
of Moeller’s 2-particle wave operators) we also present (in Sec. 6C)
an iterative solution (similar but not identical to the one given by
Sazdjian S3) ).

Remark. The separability condition for a 3-particle system in the pre-
sence of 2-body forces implies that when one of the particles is taken
to infinity the remaining two continue to interact. If this (strong)
separability condition is abandoned, then one can construct compatible
3-particle constraints of a rather uninteresting type (see Sec. 6A of
ref. T5) ). Mutze M4) has argued (in an alternative formulation of the
relativistic many body problem) that only N-particle separable forces
can appear among N interacting particles (if one of the particles when
taken to infinity becomes free then the remaining N-1 particles also
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become free). It appears that the assumptions underlying this result
are unnecessarily strong.

6B. Separable N~particle interactions in terms of classical wave
operators

Let H and H_ Dbe two Hamiltonians (i.e. two (Buclidean invariant)
functions on phase space) and let LH and LH be the corresponding
Liouville operators (4.7). The classical wave 8or Moeller) operators
are defined (whenever they exist)+) by the strong limits

Wi =W, (‘“,Ho) = s-bwm QH-“- e'“'“*’ - (6.2)
t—tw
with respect to the o“ norm
ngu=jr |ftap| T B2E (6.3)

Phys
This means that whenever f is a (say, smooth) function with a finite
éz norm, we have

o | (wa (4,09 - . ) M =0. (6.4)

Here q and p label the independent (physical) phase space coordina-
tes. One should think, for example, of the variables 9 and Pq when
the constraints are written in the canonical form (4.2) and the gauge
condition ng = 0 (4.14) is adopted; in that case we have

lpembly=D (2 -2 .2) @
S T R T
translation invariance implying Z?-"}- =0.
The following easily verifiable infertwining property of the wave
operators is characteristic for them:
tL L
14 HW+ = W+ e Ho

= s 4

LH Wi‘ =Wr L'Ho . (6-6)

What is, however, important for our subsequent discussion is the pos-
sibility to reconstruct the total Hamiltonian H from the knowledge
of Hj and, say of w,_ in the absence of bound states.

+) We note that the existence of such operators is established for a
wider class of Hamiltonians in the gquantum theory, than in the clas-
sical framework (see, e.g., the discussion on existence of global so-
lutions of the classical equations of motion in R1)). The existence
problem for a classical S-matrix is studied by Hunziker H5) .
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Let the Hamiltonian H = H_ + b admit no bounded motion. Techni-
cally, this means that if q(t), p(t) is a solution of the equations
of motion

;= 2H .= 24
* 0 TT

then
'f?i dlaw, pw)) =0 . | (6.7

(Physically, Eq. (6.7) is an expression of the hypothesis that parti-
cles get far apart for t-+o and that the interaction is assumed to
vanish for such asymptotic configurations.) This property will certain-
ly be satisfied for (separable) repulsive potentials . Under this as-
sumption we shall prove that

W, Ho = H (6.8)

(w+ could be replaced by w_ if the limit (6.7) were zero for
t—s-o ).
First we note that since

ethhe g o ot pud + LE{PRT HY 4. (6.9)

we have 3—*LH°Ho = Ho so that
e‘eLH. e‘tLH, Ho - e‘e LH (H-d)) - H. - ¢ (1(t)v Pu:));

taking the strong limit t-»m (after applying both sides of the last
equation to a smooth o4 ~function f£(p,q) ) and using (6.7) we obtain
(6.8).

It is straightforward to construct compatible constraints in terms
of the (classical) wave operators in a Euclidean (more precisely
Rl x E(3) where R' is time translation) invariant canonical Ha-
miltonian theory for which the wave operator W+ (h, ho) exists, where
in the equal time gauge

N
'lt= A(f4)"‘) Pu s q.“,.-.,q-u__‘ N) ’ llo--z‘um:'* P‘_z (6.10)
- - Ry 3 a- L

and h does not admit a bounded motion. To this end one sets

W= (VM pl - p2) = W, (oga p2)-p290; a=dp, (61D)

The compatibility condition follows from the identity
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Wy ({£.93) = {w,f, wial, (6.12)

Eq. (6.12) is implied by the fact that N generates a canonical
transformation which commutes with the Poisson brackets:

e ({pad) = 1 ey, e*L“%}, (6.13)

If w, is Poincaré invariant, we can also assert that the surface }t,
given by the constraints (6.11), will be Poincaré invariant.

The problem is to construct a L corresponding to 2-body forces.
To this end we shall first write down an alternative representation for
the 2-particle wave operators.

Let hab = ha + hb be the canonical 2-particle Hamiltonian for par-
ticles a and b , where the constraints (&f: 0 = @F are assumed
to satisfy conditions (i) (ii) (iii) of Section 44 . Let further

[ [
har= "l‘b + Vab where ,‘tu' = \lm}'-l- f:' + V‘Mf'+f:‘ . (6.14)
Then the operator Mﬁ?i w&({ab,&:b) can be written in the form

L ° ¥
W f-'::“. otlha -tlig, =T*"‘FL L., at (6.15)

where T stands for the antichronological product and

Vo = e by, (6.168)

so that

_ JtLw ) ~tLy2
L\(n.l*)— e LV.n. e " (6.16D)

The "interaction picture formulas" (6.15) and (6.16) follow from the
finite-time relation

tlu, -tLng ¥
" “ha o haw T* ”"‘I’S. LV..,(’G)'A-L . (6.17)

(In order to prove this last relation one verifies by differentiating

with respect to t that both sides of Eq. (6.17) satisfy the same first

order differential equation with the same initial condition,)
Proposition 6.1. Let, for a fixed Lorentz frame

V) =2_— V,w; (6.18)

1sa<bsN

then we define the N-particle wave operator
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X )

(assuming again that the right hand side makes sense as an operator on
éa') . We claim that then the constraints (6.11) satisfy all condit-
ions (i)~(iii) of Sec. Z4.
Sketch of the proof. Compatibility is a consequence of (6.12).
Cluster follows from the additivity property

L.,= (6.
v Z;_;LV“ _ \ (6.20)

and from the assumed separablllty of V ab (i.e. from V ab™ 0 for
/4
+ (? b) )] V2 ———» ® ). Lorentz invariance can be deduced

'ab = (qab
from the Blrmann-Kato invariance principle (cf. also the work of Soko-

lov S4), 86) ).

6C, A series expansion of N-particle constraints in terms 2-body

forces
We shall look for manifestly Poincaré invariant WN-particle constra-
ints
S 3
@ = z (md +p2) +4>“+ ch , a=4,..,N (6.21)
where

N
b =2 du (dus =0) (6.22)

¢kk is a 2-particle "potential" of type (6.1), and :5, is a sum of
n-particle interaction (3£ n<£N) to be determined from the compatibili-
ty condition

10 @) = % tb +{¢,+b4,d>b+.&.} (6.23)

Assuming that the 2-body terms 4’ are proportional to a (small)
parameter O(a = ol , we look for solutlons 6 of Eq. (6.23) that are
second order in the « s .,

Setting
e (2 5 x -
&= 87+ BV wmeme M- 0«9 (6.24)
we deduce from (6.23) a recursive system of equations for nﬁf)
® _ @)
r‘qh'$ Pa Qqu& + {bﬂ! &b} (6.258)
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Pb L% :‘)- ?‘ g_o('“?b“)"’ &Q’A'Eiz)!l HZ\"(:). ‘bb’l =0 (6.25b)
XS %ﬁ‘“"r Lo, BT 132 B2y 1 By =0 (6.250)
ete,

A crucial device for finding an explicit solution of Eq. (6.25a) is
the introduction of the 2-particle vector valued function Bab , anti-
symmetric in a,b, which satisfies

’3 ) a2
e q‘Bah 1"'%"3«5 = 75?;—2' (= %%:' %) (6.26)

where Boy = By (gab’ Tap » Wap )y

T P (ﬁs'}ah)?\b ;0 Tap = bat (%\b?ﬂ)%\b': = Tea (6.27)

A
(Go=13al), w,, and B being defined in Eq. (6.1) .

Given Bab we verify that

) L d’g _
$s =§°( T Dac + e Db 3 B“"B“) (6.28)
is a solution of (6.25a) (as a consequence of (6.26) ).

The functions Bab can be constructed as follows:

Ta da ab 4a
B = o 38+ R Rl B0 (e Bugf) e

A i
Ty = Il'l.p.\-“"‘"
where
¢ 4
(2 ] Viear, w d (6.29b)
ap ) = 0 UYi+x=z ’ar;,, d)‘“’(“ o) dx

and tab is the (relative) angular momentum of the system (ab):

! Ttm, ah (1745“&») (6.29¢)

We observe that the solution (6.28) for ?ﬁf? only involves 3-body
forces (it is, therefore, consistent to postulate that n-body forces
for n¥%4 are of higher than second order with respect to the 2-par-
ticle coupling constant ® ). This solution is symmetric in the varia-
bles (qb, pb) b # a . As far as the B-function vanish for infinite
particles’ separation (provided that ¢ and %% tend to zero for

v — ® ) it satisfies evidently the cluster decomposition requirement.

In the important special case of the first order in & contribution



245

to the (relativistic) Coulomb potential (5.31),

) oy Eau €a @ way -3 -
e = ————— gy = o, Eg= — (6.30)
Tab 4 eWal

we obtain the simple expression

Covl w z .-
b"___ ‘t’a.:. Teo Tar — (Mat Bar) Bab (6.31)

ey

We end our discussion with a couple of remarks.

The solution of the system (6.25) is clearly not unique. At each
step the functions ]aoare determined up to a solution of the system
of linear homogeneous equations

) x) 2 )
1’«.,;*: s — ?b,;;.;a' =0 . (6.32)

The general solution of (6.32) is

&= g—;%m (6.33)

©
where 3; is an arbitrary smooth function of the phase space variables.
The problem of finding optimal additional restrictions on 15; (such as
appropriate Cauchy data on certain surfaces), which would lead to a

unique is, to our view, open. The "initial condition" adopted in

83) is ngt satisfied by our solution (6.29). We also have not discus-
sed the relation between the wave operators approach of Sec. 6B and

the special iterative solution of the present subsection. An application
of Eq. (6.28) (or(6.31))to a realistic 3-particle problem with electro-
magnetic interaction (in the lines of Bl) ) may be the most practical

way to overcome the remaining ambiguities.

7. Gauge dependence of canonical world lines and gauge invariance of

agymptotic results

7A. Gauge dependence of canonical world lines for two interacting
particles

We saw in Sec. 5 that there is a wide class of generalized 2-particle

mass sheils, which include good candidates for a realistic (manifestly
covariant) 2-particle dynamics, say, in the Markov-Yukawa gauge (5.27).
The question arises whether the "world lines" in the space of canonical
coordinates 9, and a5 depend on the choice of the Lagrange multi-
pliers ,11 and A, in the definition of the Hamiltonian
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Hd, %) = A4 94224, ~ 0.

The answer to this question is negative. For t@a given by (5.1) (5.15)
the canonical world lines are gauge invariant only in the case of zero
interaction ¢ . (That is a consequence of the nontrivial dependence

of the orthogonal distance r (5.16) on the total momentum P , which
implies that

>

14,7y = 55 =19, =1g. ) #0))

More generally, the following negative result was established in M3).

Theorem 7.1l. Let M be a generalized 2-particle mass-shell, satis-
fying conditions (i) and (ii) (but not necessarily (iii) ) of Sec. 44.
The projection T (f#) of each 2-dimensional fibre YacA of the bundle
M—Tl% into the (canonical) Minkowski space M of each particle

(1ra(q1;p1;q2,p2) =q,,a = 1,2) is a 1-dimensional submanifold of
_Mggiff M is (Tocally) physically equivalent to a free particle mass

shell, so that the g-space trajectories of the particles are straight

lines.

Sketch of the proof:In one direction the theorem is trivial, If the

constraints are given by

L&fﬂﬁr_ JZI,M"L* (P“ +QB(,£1_,_))?.] ~0

{m¢=

e g lmie (g8 =0 L= g @D

i.e. if they are obtained from the free mass shell by a canonical trans-
formation of type (4.12) or, more generally, if

9_@ = 0 =ng
'bf,,_ ’211..

then Q does not depend on the "proper evolution parameter" Gé of

s (7.2)

the second particle and vice-versa:

Hclgewi=o . TEodgea=o. O

Hence, the projections 14==ﬂ;Y} of the fibre Y» are 1-dimensional.
The converse statement (that the requirement

dim fa = 4 (7.4

implies (7.1) is both more interesting and more difficult to establish.
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Its proof can be split in two steps. The first one is simple and works

for the N-particle case.

Lemma 7.1. If the world lines are 1-dimensional, then

[
O _ 2ha _ (5 for  asb (7.5)
Thn k.

(where Q; are given by (4.2) ).

Proof of Lemma 7.1. Choose qlo gessay qNo as evolution parameters
on the world lines tl,...., eN . Condition (7.4) implies that we can

take these parameters as local coordinates in the fibre. Since {a is
l-dimensional, all tangent vectors to it are proportional; hence

"ot ¢*4:- Lb=4 w 1
{afiost = By = , @ab=4..oN (nosm) (7.6)
dq2 :
The coefficients Bab may depend on the point rert but not on the
Lorentz index p . Since, according to (4.2),

{q-:l‘{:ﬁ = dab (7.7)

it follows thatv Bab = 8;b . Lemma 7.1. is proven.
The second step in the proof of Theorem 7.1. is much more involved
and only works for N =2 . '

Lemma 7.2. The canonical constraints (4.2), satisfying the Lorentz
invariance condition (4.11) and compatibility along with (7.5), can be
replaced by equivalent constraints of type (7.1),

The reader interested in the proof of this Lemma is referred to the
original work of Molotkov and the author M3). We shall limit ourselves
at this point to a couple of remarks.

The (omitted) proof of Lemma 7.2. could be extended to a N parti-
cle system provided that the N(2N-1) scalar products of the 2N-1
translation invariant vectors Py and Qap = 94 = 9, are independent.
In a D-dimensional space time this is only true for

D> IN-4 (7.8)

Hence, for D=4 , it only works for N4£2 . (In a 2-dimensional space-
time the proof of Lemma 7.2. does not work even in the 2-particle case.
Moreover, an example given in Sec., IIC of ref., M3) demonstrates that
there exists a class of non-trivial gauge invariant dynamics for D=2 ,
involving @& zero-mass particle,) For larger N (violating condition

(7.8) ) the following weaker result takes place.
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Theorem 7.2. Let the generalized N-particle mass-shell satisfy
condition (6.4) of Theorem 7.1 and let in addition the canonical Hamil-

tonian “l(l’u . :ﬁ,,qu, Gnean ) (—\.Z 1,‘) be non-degenerate in the
sense that

At . . -
‘**(orzsya) *0 (sj=t23 5 ab=h.¥) (7.

(the left-hand side standing for the determinant of the 3N x 3N matrix
of second derivatives of the Hamiltonian),

Then the (canonical) Minkowski space trajectories of all particle

are straight lines.

The rather technical proof of this theorem is a straightforward
extension of a similar argument by Leutwyler L3).

Note that the Hamiltonian of a free zero mass particle violates
the non-degeneracy condition (7.9).

Finally, we remark that.the proof of Theorem 7.1. is local and uses
smoothness in open neighbourhoods. Therefore, it does no apply to boun-
dary points of the generalized mass shell. If we define the generalized
2-particle mass shell as ‘

ﬂ(k,={(q,.,,,;q,,,,.)er=, l’:""l""“‘z*t:' a=42, r1=4I;12‘(w)>o},(7.1o)

then we will have a gauge invariant description of elastic scattering
of relativistic balls with piecewise straight world lines (see Sec.
1C of ref. M3), as well as T5) ).

7B, Relation to the Curris-Jordan-Sudarshan (CJS) "no-interaction

theorem" .

Theorem 7.1. is the counterpart of the (by now classical) "no-inter-
action~-theorem" of refs. C4), L3), H3). In order to elucidate the pre-
cise relation between the two results, we start with a concise formula-
tion of the CJS statement of the problem and main theorem,

A CJS N-parfticle system is defined by a Poisson bracket realization
of the Lie algebra of the Poincaré group in the phase space ra = R6N
spanned by the 3-dimensional particle coordinates %ﬁ and momenta

Dy, (a,b = 1,...,N) and equipped with the canonical symplectic form

e = Z;i d4a Acl-t. i (7.11)

The Euclidean generatores 31 and iL (= % éiijJk) are assumed to
have the standard ("free") form (4.4) and (4.10), while the Lorentsz
boosts J°1 and the Hamiltonian P° = h are required to satisfy the
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a0 called "world line condition" (in the terminology of C4) G2) )

[3%6)1 = qid{ad A}, a=h¥ ;s agd2s. (7.12)

A CJS system is called non-degenerate if the equation éa = {qa ’ h}
= V (q,p) can be solved with respect to the canonical momenta Py
(or, equivalently, if Eq. (?7.9) takes place). -

CJS Theorem C4), L3) . Every CJS 2-particle system, and every non-
degenerate N-particle system for N 23 , is canonically equivalent to
a free CJS system (with Hamiltonian h = h = ;1’”‘4'1-_:_')

Remark. The CJS theorem was originally established in four space-time
dimensions. It fails in two dimensions unless one adds extra assumptions
(ca), H3) )

Given a generalized N-particle mass shell M +there is a natural
condition under which one can construct a CJS system. Assume that the
intersection of M with the equal time gauge qaO =%t ,8=1,...,N
cpincides with R6 (and is a global section of the fibre bundle

M — T, ). If we define the Lorentz boosts by

or_ i )
T*=2_ hagd (7.13)

which is consistent with (4.10) and (4.2) for t=0, then the world line
condition (7.12) is a consequence of our assumption (7.4) of gauge in-

variance of the world lines. Indeed, according to Lemma 7.1 ,

{ga y by} = 0 for a # b ; hence,
{70 qd % -Z al1gd. 4 = ¢2{qd Y = gAY

in accord with (7.12). Thus Theorem 7.1 can be obtained from the CJS
theorem (using Lemma 7.1 and the above argument) provided that the
intersection of M with the equal time gauge is rON |

7C. Non-canonical position variables and gauge invariasnce of asymp-

totic results.
Three ways out of the difficulty, signalled by the results of the

preceeding subsection, have been discussed in the literature.

One, consists in introducing a privileged gauge, like the Markov-
Yukawa condition (5.27). Then, of course, we shall have well defined
Poincaré covariant world lines (the Hamiltonian being fixed up to an
overall factor). The disadvantage of such an approach is that it seems
to be at odds with the cluster decomposition property in the many par-
ticle case. (See, however, the discussion of this point in the Lagran-
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gian approach, advocated by Professor Longhi in these Proceedings.)
The second one introduces non-~canonical position variables

Y =X (Qy,.. 04 Pos--- pn) such that

®a, @€Y =0  for  a%b (7.14)

(wich thus would have gauge invariant world lines).
We assume in addition that X, is a 4-vector which coincides with
q, asymptotically (for ¢:-,v7ﬁ;§3- ).
In the 2~particle case (in 4~dimensional space-time), when the ge-
neralized mass-shell is given by the constraints (5.1) (5.12), it is
convenient to demand in addition that

Ka = q..g, for 'Pq. =0 y a=4,2 (7.15)

as proposed by Droz-Vincent D5) and Sazdjian 82)., Then one can write
X, in the form

A .
1=+ M + Bat + Cu (p- pPIF) 1 a=de (7.16a)
where p is the relative momentum (satisfying p P20 ) s and
A
| A Az Az
¥=-B . F=Lq (-P%=1- %) (7.16b)

while the coeffieients A, ., B, , Ca can be written as power series

in the variable
A
= Pq |
A = (7.17)

such that A = o) , B, = O(;(,l) , and Cé = O(}s) (for f—’O)
see N1).

Such a distinction between physical positions and canonical coordi-

a

nates is justified -as explained already on the example of a free spin-
ning particle in S8ec., 3 . It, however, leaves 1little of the original
simplicity of the constraint Hamiltonian approach. Therefore, it is
important to realize that one can extract gauge invariant (and physi-
cally interesting) asymptotic results directly from the canonical sche-
me.

We have already introduced in Sec, 6 the classical wave operators
Wy (=, Ho) . The reparametrization (or gauge) invariance is one of
their basic properties. In the 2-particle case, for M given by (5.1)
(5.15), it is a consequence of the elementary identity
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etLRﬂQ e.tLHo*Al(__: Q'H'H e‘tl‘“o

valid for {H.q} =0 = {Ho,q} . In general, this is the physical con~-
tent of the Birmann-Kato invariance principle which says that for a
wide class of smooth monotonously increasing functions F (%) on the
reals (such that Fl(§)> 0 everywhere)

W, (H, Ho) = Wy (FOH), F(Ho) . (7.18)

(This principle, originally established in the quantum mechanical fra-
mework, was justified in the classical context by Sokolov 85),) The
gauge invariance of the classical scattering operétor is then a conse-
quence of the relation

S=wrw_ . (7.19)

The gauge invariant asymptotic results also include the quantum mecha-
nical bound state energy levels (whiph appear as poles of the scatte-
ring amplitude).

8. Quasipotential approach to the two-body problem in quantum electro-
dynamics.

8A. Quantization of the relative 2-particle motion

In order to make contact between the constraint Hamiltonian forma-
lism and the quasipotential approach to the relativistic 2-body problem
(developped in L6, 7) T3) F2) R3,4) it is sufficient to consider the
quantization of the relative 2-particle motion, regarding the total
momentum P as an external parameter (analogous to the energy E in
the stationary non-relativistic Schrddinger equation). We shall res-
trict our attention in the present lectures to this simple part of
the problem of quantization. One way to deal with the much more com-
plicated general problem is described in the work of Droz~Vincent, and
of Horwitz and Rohrlich, presented at this Workshop.

Consider the (locally convex) topological vector space éFP of in~
finitely smooth functignsA“a{(q) = % (q,P) which decrease fast in the
variable q, = q + (@ P) P and satisfy the differential equation

2 2—1— t@®)=0 (ze>120). (8.1)

Here q = q; - qp 1s the relative canonical coordinate; as we know,
the general solution of Eq. (8.1) is a function of q, and P,



252

Let n Dbe an arbitrary time-like vector normalized by

Infl =4 ('?é,v’u—? , B=-1) (8.2)
then the scalar product
@.W=04), - JBigprg Tmgidy (8.3)

does not depend on n . Indeed, every solution of Eq. (8.1) can be
written in the form

v@gp) = (2ﬂ)'3] 4 (p.P) - S(pD) &P dép (8.4)
inserting (8.4) into (8.3) we obtain the manifestly w -independent
expression

(2.%) = (2"0)'3} suP- “g(fl’). S(P‘f)é"f . (8.5)

Boundstate wave functions (corresponding to discrete "eigenvalues" of
W=\/'-_f?- ) are vectors in the Hilbert space completion 7{1, of ‘J}?'
We say that a dynamical variable is a relative observable if it
commutes with the operator P'l- in the left hand side of equation
(8.1). The variable q, the orthogonal (to P ) coordinate differen-
ce, is such an observable and so is the relative momentum operator

=52 = (2 ns ions . .
=-4 5—;[_ _4,(()_17 +f( ég;)) on solutions of (8 1)].(8 6)

They satisfy the commutation relations
[PI"P"] =0 =[qr|q_r 5 [qr ,w] ____,4-—“-'!" (TU:, =5g+P"'§v)_ (8.7)

The space 1; is, so to speak, the leaving room for all systems whose
generalized mass shell lies on the hypersurface pP = 0 . For a given
interaction (an energy and angular momentum dependent "quasipotential")

d(r,w, ) (r- Iqll ) we shall write the stationary Schrdinger
type equation '

Hi= ['z (p~ ﬁw))+¢cr.w,t)] YqP =0. (8.8)

In the centre of mass frame, setting

R=(0) , 9-49,=00,0) (r:ln)"P:(o,_r_a)-_—(o,-a;?\_:) . (8.9)
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we arrive at the 3-dimensional equation

[-%(A-& ﬁ'w)) + c|>(r.w.£)ll_l:w(£) =0 (8.10a)

which is equivalent to a local differential equation for the partial
waves "lh (r\w)

{-_L[rzd‘_(r"--\ )+,uw £(1+4)]+4>(rw1)}?j¢ (rw = 0. (8:100)

8B. Reconstruction of the guasipotential for a given Feynman expan-

sion of the scattering amplitude

The question arises: can we construct an interaction function‘
such that the Schrddinger equation (8.10) would reproduce, e.g., the
correct energy bound-state level corresponding to a given (local)
quantum field theory? The answer is yes and the route to the construc~
tion passes through a relativistic Lippmann-~-Schwinger equation for the
2-particle scattering amplitude.

Consider the elastic scattering of two particles of masses my and
my w1th inital momenta pl =Py » p2 = D5 and final momenta
plf R p2 . The invariant scattering amplitude T is defined in terms

of the 2-particle S-matrix element as follows:

CobpHl 8 gy = <hHL P hlp> +
+E)s § (pfepd- -p2) TS, Pfi 1’4'1’2) (8.11)

where we use the following invariant normaligzation for the l-particle
states:

HElhy =@ 29 S (p-pd) : azdz (8.12)

The symmetric (partial) off mass shell extrapolation of T +to momenta
satisfying

2 z 2
be-p2 = (p} _(,1,4) = m}-m] (8.1%)
can be regarded as a function of the total momentum

P = pr+pa = 17,,++ 7;" ' (8.14)
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and ‘the two (orthogonal to P ) relative momenta

_ ) _ 1 mim® oD
Petab-bape 5 bPs papfoppd 5 pe=ft T (Rpe0= D).
(8.15)
We postulate for T +the following (relativistic) Lippmann-Schwinger

type equation:
T (php) + Ky (pfp) +
+ a0 |16 (phK)-G, (o) T Lk, p) - S(2Bk) d'k = O (8.16)

where Gp is the Green function

1
Gptk) = . (8.17)
2 kl - “_z[w) - 4:0
This choice of G_ (k) is imposed by the following two requirements
(a) We demand that for a hermitian K ,

K=K wnere KL k) =K, Chop) - (8.18)
Eq. (8.16) should imply the elastic unitary condition

T4'p -T;Zf.e',) = @‘r'_),_j‘r;“,{k).‘gugf). $(22k) - S(k2 4 ) A%k, (s.19)
(b) We require that GEl (p) is a second order (Poincaré invariant)
Local differential operator (for p = ~ i g}—) v

Under this assumption the corresponding homogeneous equation will
be of type (8.8) (or (8.10) ).

The implication (8.18) =»(8.19) determines the discontinuity of
the Green function. Indeed, writing equation (8.16) and its solution
in the symbolic form

T+H+XKXEG&GT =0 (8.16%)
___ 14 - _ (8.20)
T= 1+K6 =-% 4+6%K

we find (using K = K*)

T
T-T%=(x 4+em) - Tixe © =

, |
= ok A = T* * (8.21)
1+1<*1C(G- G*) H%&% (6-6")T.
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For G given by (8.17) the discontinuity is

Gpth) - G U™ = 2mi § (k1 4%).  (e.22)

Inserting (8.22) in (8.21) and deciphering the short hand notation
in the right-hand side we recover (8.19).

In the centre of mass frame (8,9), setting T Q)(o, pt ; 0, D) =
= T (p , p) etc., we arrive at the following 3- dlmens1onal form of
the relat1V1stlc Lippmann-Schwinger equation:

1:;(j’_+-1_>) + Kw(f\‘,z) +
y %k
Lok fey — A T k) . (823)
“"'J w2 &= Ay -c0 Y =t pn)?

In order to exhibit the precise relation between Eq. (8.23) and the
homogeneous Schrddinger-like equation of type (8.8), we introduce the
wave function Q (k) corresponding to the scattering problem:

1 k) =zn)‘5( -k) + 1 T (8.24a)
<l =EUOTE 2wy (™ peio) ep) K

where -
‘w2 = \/'m,ufz + V‘;f‘-l- f"- . (8.24p)

Inserting in (8.23), we find
L pt)d (pf —‘—j (phk)d (k). 3% _ o .
(- 2) 4 a0 [l g ) 2 o e
In the case of a local gquasipotential, for
Kylp, k)= Ky tp-k) (8.26)

(which has its part in the applications), Eq. (8.25) becomes a special
case of (8.8) (or (8.10) ) for

2birw) = ;—w- "K‘,,(t) et 2T él%‘

" P4y d* f
I 2([’) X(sz) e" (?.11)5

The question of determining the interaction term é in the (quanti-

(8.27)

zed) generalized mass-shell equation is thus reduced to finding the
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kernel K in the ILippmann-Schwinger equation. On the other hand, for
given perturbation expansion of the scattering amplitude

T=T,+Te+ ... (8.28a)

(where Tn is the term of order n in the expansion parameter),
having, for example, the Feynman diagram expansion of T for a given
quantum field theoretic Lagrangian, we can use Eq. (8.16) to obtain

a corresponding expansion

K=% +5, +. .. (8.28b)

for the kernel K . Inserting (8.28) in (8.16), we find

K=-T, v Koz=-Ta+ T &T, ete. (8.28¢)

’

With such a definition of X it would of course be a vicious cir-
cle to try to solve (8.16) with respect to T in a perturbative way.
However, if we are able to solve (8.16) or (8.25) (resp. (8.10) )
exactly (or more generally, in a non~perturbative way) even for K =

K, we will obtain an information about T (or 4 ) which is not
contained in any finite number of terms of the perturbation expansion
(8.28a) . We shall see in the next subsection how one can obtain a
relativistic Balmer formula in this way.

8C, Effective 4-potential for hydrogen-like systems. Fine structure

of the energy spectrum

In order to obtain a realistic application of the quasipotential
equation we would like to determine in the lowest order in perturba-
tion theory the effective potential V¥ that enters the stationary
(relativistic) Schrddinger equation

Hek = Lmd+ (p-YF-E-YPF]d =0 (8.29)

which ig the quantized version of the Hamiltonian constraint (5.30)

(m, and E being given by (5.22) and (5.25), respectively). Using
(8.27) and (8.28¢c) we would like to express the momentum space counter-
part of the interaction function

= EV- 4P VI+ V-V, (8.30)

in terms of the Born diagram in the theory of two oppositely charged
spinless particles. Keeping the first order in o terms in (8.30) we
find
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2EVURR) - (pak) Vg, k) =- 535 T th k) =

el A€, Ey +(p+i) (8.31)
LW LI’!SY- :
where
' (m2- m2)* 2
4B(E, = dpupawt = wie DT = 4 (Bw - A1) (8.52)

( E, = F%ﬂf, a=1,2 ).
(We note that the on-shell expression for Tl in the right-hand side
of (8.%31) is gauge independent.)

It is clear that the 4-potential V¥ is not determined uniquely
from (8.31), since adding to it any Z4-vector orthogonal to (2E,. p + E)
would not change the left-hand side of the equation. This gauge-Ereedom
can be used in order to identify V° with the Coulomb potential:

Voip, k) = - (8.33)

et
(p-f)°
Using the last equation (8.32) and noting that on the mass shell
(+k)- 4™ = (p-k)*
we find

(pak) Vip )= - &

For an appropriate choice of the 3-dimensional gauge we can write
the following expression for the space part of the vector potential:

_ et Bk
Y(fr.‘.‘?) = T w W . v (8.34)

Finally, we extrapolate the validity of (8.33) off mass shell (drop-
ping the condition p2 = E? /= bz(w)/ ). In the r-space picture VM
is given by the pseudo-local expression '

'\ro.——— ;“F ’ ="4: NI 'Is (d = Z‘e‘,_:') (8~35)

where I  is the space reflection operator: I ZL(E) = % (-1) .
The effective potential (8.30) turns out to be a local multiplication
operator, since

pVe¥p = - L 5) (p=-iV)  (8.360)

) (8.36b)

- 4wty
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This completes the evaluation of the operator Hem in (8.29) for
spinless charged particles and can be used for calculating the fine
structure corrections in that case (see T3) R3) ). By the same type of
reasoning one can also derive the following expression for the case
when particle 1 has spin % , while particle 2 is still spinless (see
R4) ):

=-1 W) -EZ - L & o x?
Hep=- g (A+4'np) -EZ - L £ v n 5oy + —
oL Ee ol Ee
+T & ——— T 8.
TF §tr) o= (1+ = )I:_ . (8.37)

Here E1 and E2 are the centre of mass energies of particles 1

and’ 2 (given in (8.32) ), L = rap = -ir. AV  is the orbital angu-
lar momentum, ©”. are the Pauli matrices. (The terms in the second
line of the right-hand side of (8.37) disappear for spinless particles,)
A standard evaluation of the energy eigenvalues leads to the following

result: z Y
_me= . meld _ M miem My +Mm
e = A T (2 ) PW‘( ry v -'co'tu )
+0(«%) (Mzmmirms , Mu=mem, | L), (8.38)

The right-hand side of (8.38) gives the correct expression for the
energy eigenvalues up to order & . This has been verified by evalua-
ting higher order Feynman diagrams contributions to the quasipotential
(see R4) ). The possibility of obtaining the correct fine structure
of the energy spectrum using only the single photon exchange diagram
Justifies a_posteriori our choice of gauge which led us to a local
expression for the effective potential (8,30).

9. Concluding remarks

In the preceding pages we have argued that there exists at present
a self-consistent relativistic particle mechanics, both classical and
quantum, which clarifies old puzzles and provides a background for
practical 2-particle calculation. This does not mean, of course, that
the subject is essentially closed. We would like to mention here some
problems which require (and merit) additional study.

There have been two ways of deriving an expression for the electro-
magnetic forces between two (point) charged particles., One, pursued
by Bel and colaborators B3-5), starts from classical electrodynamics
and the corresponding retarded interaction. The second extracts the
same type of information from quantum electrodynsmics in the framework
of the quasipotential approach (reviewed in Sec. 8 of these notes).
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A systematic comparison of the resﬁlts of these two approaches should
be instructive. '

The study of three and more particle dynamics still leaves much to
desire. There is no coherent treatment of the problem of scattering on
(and destroying ) a bound state in the constraint Hamiltonian approach.
The quantization of 3-particle interactionsof type (6.28) (6.29) poses
a non-trivial ordering problem. (That is a part of the general problem
of quantizing constraint dynamical systems which is still in its in-
fancy.) .

Application of the quasipotential approach with a Richardson type
of interaction R2) undertaken by Crater C3) (see also Al) ) seems
quite promiéing and should be pursued in a more systematic way.

I would like to thank Professors X. Fustero, J. Gomis and J. Llosa
for their hospitality at the Workshop on Relativistic Action-at-a~Dis-
tance in Barcelona, where these lectures were presented, as well as
Professor Philippe Blanchard and Professor Ludwig Streit for their
hospitality at the University of Bielefeld where these notes were
written. Numerous discussions with practically all lecturers and with
many of the participants of the Barcelona Workshop are also gratefu-
11y acknowledged.
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