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PREFACE 

This volume contains the main papers from the workshop on "Relativistic 

Action at a Distance: Classical and Quantum Aspects", held in Barcelona, 

June 15-21, 1981, in which we have tried to review the work and progress 

in this field over the last twenty years. One of the main aims of the 

meeting was to encourage communication and discussion among physicists 

who are working in this subject from different approaches. Our inten- 

tion was to break the isolation that scientists from various lines of 

work often find themselves in, and who thus have often ignored each 

other. 

Relativistic action-at-a-distance dynamics is at the present time 

a rather heterodox approach to interacting particle systems, particular- 

ly in the present panorama of theoretical physics clearly dominated by 

field theories. The reasons for this prevalence are obvious. We have, 

first, the success of Maxwell's electromagnetic field theory where the 

various attempts of Newtonian action-at-a-distance theories failed. 

Secondly, Maxwell's field theory supplies a suitable framework to ac- 

count for radiation phenomena which, apparently, cannot be explained 

in the framework of an action-at-a-distance theory - actually, the first 

theory which succeeded in accounting for electromagnetic radiation was 

Wheeler and Feynman's electrodynamics (1949). 

Another important factor has been the apparent incompatibility be- 

tween Poincar~ invariance and instantaneous action at a distance which 

has been often identified with "interaction transmitted at infinite 

speed between simultaneous states of the particles". 

Nevertheless, in spite of their many successes, some important pro- 

blems of field theories remain unsolved. Think, for instance, of the 

interaction of a particle with its own field - self-interaction. The 

energy associated with it is infinite, a situation which is obviously 

absent in an action-at-a-distance theory. This diff±culty is insurmount- 

able within classical field theories, and the renormalization techniques 

of QFT give satisfactory solutions in certain cases (electro-weak, QCD), 

but quantum gravitation still cannot be renormalized. Also there is the 

remarkable fact that, in dealing with bound states, quantum field theory 

leads to Bette-Salpeter equations quite similar to the equations that 

one hopes to deal with in an action-at-a-distance quantum theory. 

During the last three decades a revival of action-at-a-d~stance 

theories has taken place which has taken relativistic invariance into 

account. A good review of the first half of this period is supplied by 

the reprint collection edited by E. Kerner, The Theory of Action at a 
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Distance in Relativistic Particle Dynamics (1972). At that time several 

branches had already appeared which dealt with the subject: on one hand, 

the non-instantaneous action-at-a-distance theories - Wheeler and Feyn- 

man's electrodynamics (1949) and the more general Van Dam and Wigner's 

theory (i965) " and, on the other hand, the instantaneous action-at-a- 

distance theories. This last group can be further divided into two sub- 

branches: Dirac's Hamiltonian formalism (1949) and its subsequent de- 

velopment, and predictive relativistic mechanics. Whereas the first for- 

malism plans the construction of a canonical realization of the Poincar~ 

group on the phase space of the system of particles, the second empha- 

sizes the fact that the world line of each particle must be Poincar~ in- 

variant. The no-interaction theorems must be placed between both sub- 

branches. These theorems state that conditions a) canonical realization 

of the Poincar~ group and b) considering the positions of the particles 

as canonical coordinates are uniquely compatible in the special case of 

free-particle systems. 

Since the collection compiled by Kerner was published, these branches 

have undergone further development. Moreover, new approaches have also 

arisen, inspired either by Dirac's constraint Hamiltonian formalism 

(Lectures on Quantum Mechanics, 1964) or by the singular Lagrangian one. 

Both formalisms are canonical and manifestly covariant. The negative im- 

plications of the no-interaction theorems are avoided by dealing not 
N 

with the whole phase space TM 4 but with a sub-manifold of it. 

After three decades of this relativistic revival, the action-at-a- 

distance approach has not achieved the degree of development of field 

theories, and a lot of work is still to be done. A first quantization of 

action-at-a-distance theories presents some difficulties which have not 

yet been completely understood, while second quantization must be con- 

tinued from the embryonic stage presented by Professor Droz-Vincent in 

these proceedings~ etc. The following conclusion, however, can already 
,, 11 be drawn: the situation is not one of action-at-a-distance versus 

"field" theories; rather, both approaches must be considered as com- 

plementary tools for achieving a deeper understanding of interaction 

phenomena. 

In the Barcelona workshop a review of these developments was presented 

and, as can be seen by a glance at the contents of this volume, we center 

our attention on "instantaneous action-at-a-distance" theories. This 

volume includes, besides the papers presented at the meeting, two con- 

tributions by Professor R. Arens, who had been invited to lecture but 

was prevented from attending the workshop. In his first paper Professor 

Arens presents a way of generating solutions to the Droz-Vincent's 

equations by means of diffeomorphisms of the phase space of a free- 



particle system. In the second, he proves the existence of interacting 

two-particle systems under the assumptions of symmetry, dilation and 

Poincar~ invariance. 

The contribution of Professor R.N. Hill, who was one of the pioneers 

of predictive relativistic mechanics, deals with the origins of his 

approach. Part of the further work in this branch is presented in two 

lectures by Professor P. Droz-Vincent. The first treats the multi-time 

covariant formalism and the a priori Hamiltonian approach, where the 

result of the no-interaction theorems are avoided by giving up the 

canonical character of the position coordinates. The second lecture 

presents an attempt to second quantize a system of interacting particles. 

Closing the set of conferences which we have classified as predictive 

relativistic mechanics, Professor L. Bel's lecture deals with retarded 

equations and states that equations of this kind predictivize spontane- 

ously in the cases of constant retardation and of electromagnetic and 

gravitational interactions. 

From another point of view Professor F. Coester presents a Hamiltonian 

formalism which could be classified in the line of Foldy's previous work. 

In the first lecture the general framework is presented and, in the sec- 

ond, it is applied to some particular scattering problems. 

The singular Lagrangian theory applied to relativistic particle 

dynamics is presented in this volume by Professor G. Longhi, who details 

the study of a two-particle system in this framework. He also discusses 

the problem of the separability of the interactions for two- and three- 

particle systems. 

Finally, the contributions of Professor F. Rohrlich and of Professor 

I. Todorov envisage the problem of relativistic interacting N-particle 

systems from the viewpoint of the constrained Hamiltonian formalism. 

The method developed by the first author is based upon the fact that 

dealing with a covariant model implies the introduction of 2N spurious 

degrees of freedom which must be eliminated afterward. This elimination 

is carried out by means of 2N second-class constraints; N amongst them 

define the general mass shell and the remaining N constraints depend on 

a scalar parameter and are called fixations because they determine a 

particular motion of the system. 

Professor Todorov's method uses the same constraint formalism, empha- 

sizing the geometric invariants though. So, in this approach an important 

role in the definition of the physical phase space is assigned to the 

geometrical trajectory of the system, i.e., considered independently 

of any parametrization. This physical phase space is defined by the 

foliation that the world surfaces introduced onto the general mass shell. 
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2-PARTICLE INTERACTIONS PRODUCED BY 

TRANSFORMATIONS OF PHASE SPACE 

Richard Arens 

Mathematics Department 
University of California, Los Angeles 

Los Angeles, CA 90024 

I. Introduction 

The motions of a pair of interacting particles are given by a set 

M of 2-dimensional submanifolds of 16-dimensional cartesian space 

~16 (which we took the liberty of calling phase space in the title). 

If the particles are in fact non-interacting, then these motions form 

a set M of flat 2-dimensional submanifolds. 
o 

The idea is to transform ~!6 (more precisely an appropriate subset 

of it) onto itself so as to transform M into a class M of 2-dimen- 
0 

sional submanifolds capable of being regarded as the motions of a non- 

zero, Poincar~-invariant interaction. 

Necessary and sufficient properties for a map ~ to produce such 

an interaction are presented• It is proved that all interactions so 

obtained have this property: if the particles appear to be at rest for 

some observer~ then they remain at rest for that observer (and thus 

have parallel straight world lines for that motion)• 

2. N particle interactions 

Let TI(~ 4) be the set of vectors V in ~4 Let x I 4 • ,..o., X 

be the coordinates in ~4 Then x I 4 .I .4 • ~...,x , x ,..., x a re  coor- 
.i dinates in TI(~ 4) where x (V) = a I for the vector 

while xi(V) is the x i coordinate of the base point of V . 

A vector field in Tl(~ 4) is generically of the form 

Such a vector is called basic if the component a i 

Consider the cartesian product 

-i is precisely x . 



'T'L('I~. ',) × . . .  x -V~hR~) ( N factors). (2.1) 

If l~ n@ N let a vector field on the space (2.1) of the form 

'g ~ ~ 0 (2.2) 
L 

.i be called n-basic. Here x~ and x n refer to the x i and ~i of 

the n-th factor in (2.1). 

A (second order) N particle interaction is characterized by N 

vector fields I1,...,I~ where I has the n-basic form (2.2) and 
l~ I) n 

the various fields commute: 

: 0 (2.3) 

The interaction is Poincar~ invariant if each I 
n 

under the action of the Poincar~ group in (2.1). 

Let F be the n-basic vector field 2J " 
n 

Then F1,...,F N define the zero-interaction. 

We want to show when such a map 

used to make a non-zero interaction. 

Let 

is invaria nt 

(2.4) 

of (2.1) onto itself can be 

:T~____.~ ,1~ (2.5) 

be a smooth map of that part P of (2.1) on which all the u n are 

timelike with u~ • 0 and (on which) the differences x m - x n are 

spacelike 
i 

If we have a map ~ as in (2.5), then Xm(~(p) ) is the new coor- 

dinate of p We will denote it by X i (so X l = xio~ in convent- 
" m m m 

ional notation), u~ o~ we denote by U im . Any set of four components 

such as X I X 4 m''''' m will be abbreviated by a single letter, here X m 

Vector fields for us are differential operators (implicit in (2.3), and 

explicit in (2.4)). When a vector F is applied to a function g , 

the result (of the differentiation) we denote by F [g~ . 

2.6 THEOREM. Suppose q is i:i and maps P onto P , with a 

smooth inverse ~ -1 . Then the image vector field I n of F n under 

will be m-basic if and only if 



and 

[Xm] =0 for ~#~ (2.6.1) 

F. [Um] = 0 for ~ # ~  ( 2 . 6 . 2 )  

{ 'X.)  = U~ (2.~.3) 

If these conditions are met then the ensuin5 interaction will be 

non-zero if and onl[ if 

~m[~ [Zm]1 @ 0 for some .t (2.6.4) 

The interaction will be Poincar~ invariant if ~ commutes with 

the action of the Poincar$ 5roup in P . 

It is easy to vizualize how a map q changes one vector into another, 

and it is easy to see that if it is l:l , then it changes one vector 

field into another. The formalism is that if q changes vector field 

F to vector field I then 

I [~] - V£%oT] o @-' 

for each differentiable function g defined on the manifold (say P ). 

If I n is to be n-basic, then 

~ terms of type --~ 

Therefore Zn[~m3 = 0 for m~ n . But Zn[~m] = ~n[~ ~]o~-z = 

Fn[Xm]P~ -1  . Thus ( 2 . 6 . 1 ) . ( 2 . 6 . 3 )  f o l l o w s  from I n [ X n ]  = u n . ( 2 . 6 . 2 )  

follows from the fact that I should contain no ~/~ u for m ~ n . 
n m 

So now 

• g A~g_ 

If some A i is not 0 , the interaction is not zero. Now 
n 

( 2 . 7 )  

Together with (2.6.3), this yields (2.6.4). 

A generic set (W1,...,W N) of world "lines" for the interaction 



~$(F I),..., ~(F N) is the image ~(LI,...,L N) of a generic set 

L1,...,L N of world lines for F1,...,F N . If T is any Poincar$ 

map, then 

( T I W , ) ,  . . . , -F Iw,O)  = I . . . ,  L',,) 

/ = T(L m) Thus our new interaction is Poincar@ invariant. where L m 

This ends the proof of (2.6). 

A motion for the interaction I1,...,I N is an N-dimensional sub- 

manifold S to which each of the vector fields I1,...,I N is tangent. 

When this S is projected into ~4 by x n a curve is obtained: the 

world line of the n-th particle for that motion. If ~ satisfies (2.6) 

then a motion S of E1,...,E N is transformed by ~ into a motion 

for Ii,,..,I N . 

A typical motion for F1,..,F N is obtained by selecting a point 

a nG ~ and a timelike unit vector v n in ~ for each n = 1,... 

. . . .  .,N Then as the real parameters Sl,.. ,s N vary over ~N , the 

point 

sweeps out a motion for F1,...,F N . The image under @ is a motion 

for I1,...,I N and the world line for the n-th particle is given in 

~ by 

(2.8) 

3. Potential examples 

Let the pseudoeuclidean or Minkowski scalar product of a and b 

in ~ be denoted by (ab) . Abbreviate x m - x n by Xmn . Define 

for m,n = 1,2, .... ,N . In terms of (2.4) Fp[Xmn ] = 0 if p ~ m,n, 

and F m[xmn ] = u m . So 

F, = 0 if (3.2) 

and 



F. E$,,p] = .t (up~p).Cu,,~c.p) - ,~ £,~,, ~ . ) .  C~I,~,,~.) (3.3) 

If we let, for all m = 1,2, ...,N , 

where f 
mp 

~p 

depends only on the gmn (m fixed)and define 

(3.~) 

we obtain a ~ which commutes with the Poincar@ group and also sa- 

tisfies all conditions of (2.6) except for the existence of an in- 

verse on P . 

Assume therefore that it has an inverse. 

Let us examine the resulting interaction. 

By (2.9) and (3.2) the world lines are given by 

rl, 

where the gk£ "inside" fmn have also to be expressed in terms of 

the v. and a + sjvj . i j 
The theory says that (3.5) should describe a curve. This can be 

verified easily, as follows. For simplicity, let N = 2 . Let x I = 

a I + VlS 1 , x2 = a 2 + v2s 2 . This leads to 

(3.6) 

where a = a I - a 2 and s = s I . The s 2 evaporates. 

Equation (3.6) shows that for v I = v 2 , the g12 is constant so 

that (3.$) is a straight line. When v I ~ v 2 then gl2-P-~ . 

One could therefore define fl2 in such a way that fl2--~ 0 as 

gl2-~ -~ . Then it would follow that the world line (3.5) always be- 

comes more and more straight as s (=s l) tends to ~ ~ . 

~. The case of two particles 

For N = 2 we can pretty well say how X 1 and X 2 should be 

chosen to fulfill condition (2.6.1.) . Certainly we are not limited 

to the form (3.6) . 

Before proceeding, let us abbreviate Xl,X2,Ul,U2,X1,X2, U1,U2, 

Xl2 and Xl2 by x,y,u,v,X,Y,U,V,z and Z respectively. 



When N = 2 we are justified, by the assumption of Poincar~ inva- 

fiance, to assume space-time dimension 2+1 . 

X - x is evidently translation invariant, and transforms like a 

vector under the Lorentz group. In 3-dimensional space-time, u,v and 

z together form a basis for such vectors (save for unimportant ex- 

ceptions). Hence 

where these Greek letters depend only on the Lorentz invariants of u , 

V,Z . 

The following six functions are Lorentz-invariant: (uu), (uv), (vv), 

G12 = 2(w)(uz) - 2(uv)(vz), G21 = -2(uu)(vz) + 2(uv)(uz), and 

I 
Any function o6 of these is also invariant. Conversely, if ~ is 

a Lorentz-invariant, then, on that set where 

(v---- (~)[~V) - [a~) z (%.i.I) 

is not 0 , ~ can be expressed in terms of these six functions. 

Let ~i(i = 1,2) be the class of those invariant functions o6 

such that Fi[~] = 0 . With the aid of the facts F 2 In] = F 2 Iv] = 

0 , F 2 [z] = -v , F 2 [(uz)] = -(uv), etc., one can easily see which 

invariant functions are in ~] 2 " 

%.2. PROPOSITION. %[2 consists of those functions expressible 

in terms of (uu), (uv), (v,v), .[2 and G12 

We now ask what (2.6.1) requires of X as in (4.1). 

4.9. PROPOSITION. F2[X]= 0 precisel,y if ~, ~ and_ ~÷(~-~)" (~f~)o6 

belong to ~2 " Put another wa,y, F2[X]= 0 if and onl,7 if 

where ~,~,[ are chosen from ~ 2 " 

Passing over the trivial proof of this, we enquire what (2.6.9) 

says about U , which (we recall) is u o~ 



Proof. Suppose u and v have the same value b at some point 

of P (see (2.5)) . Select a point a of ~4 such that (ab) = 0 , 

where a is spacelike. Consider the point Pa of P where u = v = b 

and x = -y = a . The value of (4.6) is here the same as at the former 
1 

point. Suppose that value is - ~ . A simple computation shows 

where the arguments in ~,...,~ are as in (4.6), whence independent 

of a . Further, u = v makes G = 0 and as a matter of fact, it 

makes U = b, V = b (compare, for example, (4.5)). Thus the point 

(pa) to which ~ maps Pa is independent of a . This violates 

the crucial assumption that ~ is l:l . 

4.8. LEMMA. Let q be that part of P (see <2.~) ) on which u=v 

and <uz) = (vz) = 0 . Let q be a map of P-~P as above definin~ 

an interaction of substitution type. Then ~ maps ~ onto itself~ as 
-1 

does 

Proof. If u = v and (vz) = 0 then X = x(~) = ~ + ~z +~u 

+ ~u and Y = y - ~ z + ~ u + [ u . Hence, using (4.6), Z = the 

value of z at the image point is (1 + ~ + ~)z . We must calculate 

also U and V (the values of U and v at the image point). Certain- 

ly G = 0 ~ so 

and similarly 

Thus (UZ) = (VZ) = 0 and V = U . Hence the image point is still in 

Q. 

Now let q be a point of Q where u = v = c , x = a , y = b , 

whence ((b - a)c) = 0 . Let p be the point where (x-y)(l+~+~) = 

$ a - b , 2( ~+ )c + x + y = a + b , u = v = c , whence ~ and ~, 

means that ~ and ~ are evaluated as in (4.6) for u = c . This p 

is surely a point of Q and one can easily verify that ~ (p) is the 

given q . 

4'9. THEOREM. Let S be a motion for a s~mmetric~ Poincar~- inva- 

riant 2-particle interaction of substitution type. Suppose in some 

Lorentz frame~ the two particles executing the motion S are at rest 

for t = 0 . Then in that frame they have been and will be forever at 

rest. 

Proof. Let the Lorentz frame in which they appear to be at rest 



for t = 0 correspond to the cartesian coordinates. Let the positions 

be (al,a2,a3,0) = a and (bl,b2,b3,0) = b . We may suppose that u and 

v = (O,O,O,1) = c. Then (a,b,c,c) = q is a point of Q . By (4.8) 

there is a p in Q such that ~(p) = q . Find the motion S O relat- 

ive to the dynamics F1,F 2 containing the initial p . Then S = 

~(S O) will be the motion relative to the dynamics I1, 12 contain- 

ing q . By (4.8) , this motion S lies in Q . 

We will now show that I n = F n on Q . The form of I n is given 

in (2.2) where the A n are given by (2.7) . We consult (4.4) for 

U 1 = U and apply F 1 . We again observe that Fl[~ ] = 2G~ J, so 

that Fl[~'] = 2 ~", etc. Now A1 = Fl[U]o ~-4 . After simplification 

we obtain 

° 

Since ~'~ maps Q onto Q , and G (see (4.I)) is 0 on Q , we 

have A 1 (and also A 2) being 0 on Q . Therefore I n = F n on Q . 

Hence the motion S appropriate for I1, 12 is appropriate for F1, 

F 2 i.e. it is a motion for the zero interaction. Thus on S the 

velocities of the particles are constant, as (4.9) asserts. 

FOOTNOTES 

l) This was first explicitely stated by Ph. Droz-Vincent, Relativis- 
tic systems of Interacting particles, Physica Scripta, Vol. 2, 
129-134 (1970). 

2) Henceforth we abbreviate ik by u~ 
n 

3) See R. Arens, An Analysis of Relativistic Two-Particle Interactions, 
Arch. Rat. Mech. Anal., Vol. 47, 255-271 (1972) 



TRANSLATION, DILATION, LORENTZ INVARIANT 

TWO-PARTICI~ INTERACTIONS 

Richard Arens 

Mathematics Department 
University of California. Los Angeles 

Los Angeles, CA 90024 

We show the existence of an infinite 

number of symmetric 2-particle interact- 

ions. These interactions are translation 

invariant, Lorentz invariant, and lead 

to second order differential equations. 

Our examples are analytic. 

i. Introduction 

The interactions we construct are local in the sense that the power 

series involved do not necessarily converge for all relevant values 

of the initial conditions. 

They do, however, converge at those initial conditions where both 

particles start from rest in some frame. These most crucial initial 

conditions could not be satisfied by the earliest example of a local 

interaction, the one due to Kerner el, pp. 262-265] 

"Symmetric" means that if the initial conditions of the particles 

are interchanged, then the same two world lines will still be the 

ensuing motion. A global symmetric interaction was given in [2,7.5] 

as well as earlier, by Arens and Babbitt ~see ~ but these were not 

analytic (merely C a ). 

We were led to these interactions by reducing the arbitrariness of 

the interactions by improving an extra condition: dilation invariance. 

That is to say, if the pair of world lines W1,W 2 belongs to the 

interaction and T is an expansion of space time centered on the 

origin (0~0,0,0) , then TW1,TW 2 also belongs to the interaction. 

There was a danger that this extra requirement would force the 

interaction to reduce to the zero interaction, but the reverse is 
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true. There are such interactions, locally, at least. 

The resulting differential equations are simpler than for the general 

Poincar6-invariant case. Therefore the chance of someone finding an 

explicit solution is enhanced. 

2. The formalism of dilation-invariant interactions 

Any binary interaction can be described by giving the Minkowski 

accelerations Mi(i = 1,2) for the two world lines involved, and 

these accelerations have the form 

(2.1) 

where Ul,U 2 are the space time velocities (with u i • u i = 1 , the 

dot product with signs -,-,-,+ being intended throughout) while z i 

is the position of the i-th particle relative to the other one (the 

it-th) . Here fl,...,g 2 are four scalar functions of the positions 

and the (unit) velocities of the two particles [2,2.4] . 

An interaction is invariant under a space-time transformation T 

if whenever (W1,W 2) is a pair of world lines associated by the inter- 

action, then so are TW 1 and TW2[~ . The zero interaction is inva- 

riant under each dilation (defined by some ~ > 0 and sending each 

x into ~x ). Kepler's third law shows that Newton's inverse square 

law is not dilation invariant. 

However, in a relativistic context, dilation invariance does not 

seem to be an unnatural requirement. It can be easily characterized. 

Proposition 2.2. The interaction described by 2.1 is dilation in- 

variant precisely if for each positive number ~ , 

For the translation-and-Lorentz (= Poincar~) invariant interaction, 

the functions fl,...,g2 depend only on the four Minkowski invariants 

of the three vectors Ul,U2,Z = x I - x 2 ~2 , (2.2)] . If we add to 

this dilation invariance, then they depend in an essential way only on 

three. We recall the notation of [2 , sec. 5] : ~ = u - z , 

= v • z, ~ = u • v, ~ = z • z, f = fl' g = gl' h = f2' k = g2 " 

Proposition 2.~. Let the interaction 2.1 be dilation and Poincar~ 

invariant. Then there are functions F,G,H,K such that 
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1 ), v )  

' .1 
" '  ) _~.' 

3. The fundamental relation 

Let L 1 be the differential operator defined for functions of 

Ul~U2,Xl,X 2 such that 

h t l ~ ) = u , ,  L4ru4)=H4 , L 4 1 ~ ) = O  , h ~ c ~ ) = O  

Similarly let L 2 be defined by 

L z ( ~ ) =  o , L ~ l ~ ) = O  , L, cx,) = ~., L,C~) =M~ 

The fundamental relation which any interaction must satisfy is [2,4.5] 

I . , l ~ , ) =  o , L~{~4) = 0 (3.1) 

The intent of an equation like this is that M 2 should be represented 

through its Cartesian components and that L 1 of each component should 

vanish. This requires of f,g,h,k (or of F,G,H,K) that they should 

satisfy some differential equations which we calculate below. 

Such differential equations were presented in [2,4.8] . They were 

in terms of the variables ~,~ and so apply only in such regions 

(or for such initial conditions) where these variables form different- 

iable coordinates. Now ~ is not an acceptable coordinate at the 

very important initial condition 

~4=/o;o.o,~)  , Jaj=(o,o,o,~), ~ - - ( k O . O . O )  (3 .2)  

At (3.2) , the variable W assumes the value i and since ~i 

in general, it cannot be a coordinate there. Since we are interested 

in local solutions to the fundamental relation valid at, and near, 

(3.2) we must choose a variable T which can replace p and serve as 
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a coordinate. 

Such a variable = is the determinant of u I , u 2 , z (please note 

that for valid reasons, our space-time is 3-dimensional [2, 2.1] ). 

We augment the list Ll(A ) = 1 + f(~ - ~2) + g( ~c- AV ), Ll(~)= 

: ~  , T ' I ( ~ )  f ( l *  ~ )  + g( l  ~2)  = - - , L I(~) = 2~ given in 

[2,+.6] by 

Pro:posi t ion 3.3.  L l ( - ~ )  = - ( ; ~ f  + # g ) ~ .  

Proof. Ll(det (Ul,U2,Z)) = det (Ml,U2,Z) + det (Ul,O,z) + 

det (Ul,U2,Ul) . From this and (2.1) we obtain (3.2). 

We can now write down the differential operator L 1 , using the 

coordinates ~,~,~.~ in terms of which any Poincar~ invariant funct- 

ion ~ may be expressed. We have the components Ll(~), etc., and so 

mp 

Here ~ is not a coordinate. It is, of course, expressible in 

terms of ~.M,~.~ . 

The exact relation is 

-F (3.~) 

Since ~ is negative, one can easily deduce that ~ ~ 1 , and that 

V = 1 only if ~=~ and ~ = 0 . Thus the differential operators 

L1, L 2 can not be used in the form written in [2] for considerat- 

ions at and near the conditions (3.2). 

The derivation of (3.5) may be left to the reader. 

The expression on the right of (3.5) is analytic in a neighborhood 

of any point of its domain, because, as is natural, we require a space- 

like separation of Zl,Z 2 which makes ~ ~ 0 . 

The fundamental equations are (cf. 2,5.3 ) 

L~({) = ~ 
(3.6) 

where L 1 is given by (3.4). L 2 is given by 

L~ = - [ ~ ~ {~- ~ )  ~ _ l~- pv)~ ~ ~ - ~ ~a ~- 

(3.7) 
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One obtains (5.7) from (5.6) by making those changes required for 

interchanging the particles, namely 

(~,F,,~,'~) --- ( - ~ , - ~ ,  ~', z)  

4. The fundamental relations if dilation-invariance is also imposed 

We introduce coordinates x = ~ ( - ~ )-q2 , Y = ~(_ ~)-q2 

= ~ (_~)-~2 . This makes 

= _ x I .  + B,i+x~)(~+~ ~-) + o-~ "~ (~.i) 

Therefore, the functions F,G,H,K of (2.3) may be presumed to be 

functions of x,y, ~ . We compute the x-component Ll(X) of L 1 , 

etc., and assemble the differentiable operator L 1 in terms of the 

new variables. The computations produce 

where 3~ 1 is the differential operator 

The companion operator L 2 is 

where 
A, = - [ ~+~-- ( , i ~ )  H - (~-~v)X]  ~ - 

(4.3a) 

(4.~) 

Theorem 4.>. The four functions of (2.3) define an interaction if 

and only if they satisfy the fundamental equations 

At{K) = -xK • H + (v~+xF)K 
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g.4. PROPOSITION 

where a is Biven b,+ (~ . l .1 )wh±le W' (e tc . )  means @~/dC~,=presumin~ that 
is expressed in terms of the five functions named in (~-3)- 

The proof is immediate in view of Fl[~] = ~t. 2G , etc. 

There is a similar expression for V = U 2 : 

('E'~) ~ - --~,~,) ~ w~ (,~-.~) 

obtained from applying F 1 to 

Here the bars are used only to indicate corresponding terms. Certain 

signs are changed because z = x - y changes sign when x and y 

are interchanged . ~/ in (4.5) indicates ~2/g G21 . 

In a symmetric ~) interaction, one would have 

(also for ~ and ~ ) . 
For a s,ymmetric interaction one has 

(4.6) 

when v = u (and the same for ~, ~). 

We want to prove that when u = v , the forces of interaction va- 

nish, although the forces need not be 0 when u # v . To form our 

hypothesis more precisely let us say that a Poincar~-invariant 2-par- 

ticle interaction is of substitution type exactly when there is a l:l 

map ~ (as in (2.6)) for which 

I;'= ~ (~) , ~ =~,2 

We establish a detail which is needed later. 

4.7. PROPOSITION. Consider a s~mmetric interaction of substitution 

type. Then the value (4°6) assumed b~ ~ and ~ for u = v cannot be 

1 
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Az(F) = z. 0 F 4- H Q 

The proof consists in writing the relations (3.6) using the formulas 

($.3), ($.$) and those of (2.3). Certain powers of -~ can then be 

factored out, giving the equations above. The functions F,...,K 

depend only on x,y, ~ . 

We showed in [2] that any solution in which G and K are identi- 

cally 0 must have F and H equal 0 also, thus representing the 

zero-integration. 

Solutions in which F and H are 0 are called 2urel2 kinetic 

[2]. We write down the equations for such interactions: 

• ~ .I- ~ .I- (x-VG)'~'-~-~-.'-- ($.6) 

and 

(~.?) 

The other two equations reduce to 0 = 0 . 

We shall see that there are power series solutions of these equat- 

ions, and therefore, of course, of all the preceding, more general, 

equations. 

As an appendix to this section, we record for later reference the 

form of the operators #~l and A 2 in terms of x,y,~ 

~-+ ~. (~.8) 
[ (~-v~) F + (,l-~)r~] ~_. 

5. S.Tmmetric interaction 

For a generiofunction J of the four (vector) variables 

Zl,Z 2 appearing in (2.1), define 

J~(Ul,U2,Zl,Z 2) = J(u2,ul,z2,zl) • 

Ul,U 2 , 
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If J depends only on the variables x,y, ~, ~ mentioned in the last 

section, then 

An interaction of two particles is symmetric [2,7] if H = F ~ 

and K = G ~ . For a symmetric interaction there are only two functions 

needed, say F and G . They have to satisfy two equations of (4.5): 

(5.1) 

being the following modification of A 2 : 

A = - [ ~ + ~ -  ca+~ ~) ~ : t  C~-~,)~,*" ] ,'a %- 

(5.2) 

(5.3) 

If we are content with a purely kinetic interaction, we may take 

F = 0 and are left with only one equation 

(5.4) 

Here ~ is as always given by (4.1). It is evidently an analytic 

function of x,y, ~ in a neighborhood of the point (0,0,O) corres- 

ponding to the initial conditions (3.2). 

Theorem 5.5. There is a local binar~ interaction valid in a neigh- 

borhood of the initial conditions (3.2) which is 

analytic , 

symmetric , 

Poincar@ and dilation invariant , 

purely kinetic , 

non-zero . 

(5.5.1) 

(5.5.2) 

(5.5.3) 

(5.5.~) 

(5.5.5) 

The only blemish in this theorem is that the acceleration function 

it delivers is perhaps not defined for all initial velocities and rela- 

tive positions. This is what we mean by local. 
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Our solution will depend on a variant of the Cauchy-Kowalewski 

existence theorem ~ , vol.5] . It may be that for some initial Cauchy 

data the solution will indeed converge everywhere but we can promise 

only a local solution. 

If it were not for those asterisks in (5.~) , one could quote the 

Cauchy-Kowalewski theorem and assert that, for any analytic boundary 

value function 

one can find an analytic G(x,y,~ defined at and near (0,O,0) , satis- 

fying (5.4) . This would be because the coefficient of ~G/~ y in 

(5.4) is 1 and therefore not 0 , at the point (O,0,O). 

However, in our differential equation there is present the "unknown" 

function G and its "conjugate" G# . We will show how to treat this 

problem. We first change to new variables s,t, ~ where s = x+y , 

t = x- y . This changes (5.4) to 

x- / ]  
~ -  _ 

_ o_ (5.6) 

G I 

Here x has to be thought of as ~(s + t) and y as ~(s - t) . The 

nature of the conjugation has changed, in that G@(s,t,~ -) = G(-s,t,~-). 

Dividing by the coefficient of ~G/~ s , we obtain a differential 

equation of the following kind: 

Where the dots stand for other variables tl,...,t n , and the deriva- 

tives of G and G ~ with respect to tl,...,t n . Here~ is an analy- 

tic function of all its arguments, and G@(s,...) = G(-s,...) , the 

variables represented by dots being unaffected. 

Proposition 5.8. Let a function F(tl,...,tn) be a function depen- 

din~ analytically on its arguments. Then there is a solution of'(5.7) 

with G(O,tl,... ) = C(tl, .... ) . 

Instead of proving this in the conventional way, I will just do an 

example illustrating how Problem (5.7) is reduced to a 0auchy problem 

of the usual sort. Let the equation to be solved be 
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G~(,:,~.) = ts-~).GC,~,'~) + 6-Cs, e.'l.6r C-s,'~) (5.9) 

Here G I indicates ~G/~S . Let G(s,t) = A(s,t) + B(s,t) where A 

is an even, and B an odd, function of s , respectively. Then 

A~*B~ = C s + ' ~ ) ( A . 1 5 )  + (A*B)(A'B) 

We replace s by -s and obtain 

- A4"~ B I  - -  Fs~,~) ( A - ' B )  -f (.A-I~3(.A+~,'~ 

because the derivative A I is odd, and B 1 is even. These two equat- 

ions are equivalent to the system 

~= sA4~B (5.9.1) 

1~,= {A + s B + A  ~ - B  z (5.9.2) 

with the initial conditions 

A(o~) = P(~) , ~(D.i) = 0 (5.9.3) 

This can be solved by the usual Cauchy-Kowalewski theorem. Let the 

solution yield A(s,t), B(s,t) . The question arises: is A an even, 

and B an odd, function of s ? To see this, let ~ (x,t) = A(-s,t) , 

(s,t) = -B(-s,t) . It is easily verified that the pair E~ satisfies 

(5.9.1), (5.9.2), (5.9.5). Thus ~= A and ~= B . Letting G=A+B 

solves (5.9). 

6. Pseudo-sFmmetric,..interactipns, 

In such an interaction, f = h and g = k , by definition. The 

concept was introduced in [2] because the differential equations 

then take on a more classical form. Indeed, we proved in [2] that 

each such an interaction could be obtained by imposing a relation on 

three expressions, namely [2~ 6.$.5, 6.4.6~ 6.4.7] . 

Theorem 6.1. Any Poincar~ and dilation invariant? analytic pseudo- 

s,Tmmetric interacti0n which is vali d at the initial conditions (3.2) 

is the zero-interaction. 

Proof. It is known ~,6.~ that such an interaction involves an 
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analytic relation between three integrals ~, 6.$.5, 6.4.6, 6.4.7] . 

In terms of ~ and the new variables x,y,~ ~ these integrals may be 

taken as 

(6.1.1) 

(6.1.2) 

~ (-z~$~ ÷ ~÷~,+~2) ~-, (6.1.3) 

where G = g( _~ )~2 , the g being, as always, the gl of (2.1). 

Let these integrals be denoted by ~,$,~ respectively. If the 

interaction is dilation invariant~ the relation between ~,~,~ cannot 

involve ~ since the ~ is not dilation invariant. Let the relation 

be 

F ( ~ , ~ )  = 0 (6 .2)  

Since  ~ and ~ a re  0 a t  ( 3 . 2 ) ,  
term.  

Proof. First let us assume that 

F has a vanishing constant 

(~.3) 

where 

Bfo,~) $ o and A(~,o) @ 0 (~.~) 

Now let ~ = 0 . Then G 

y . Note that ~= 0 when ~= 0 . Hence, for ~= 0 we obtain 

o = q. Ate, o) 

a non-trivial relation. It has the form 

is still an analytic function of x and 

, ao~,O (6 .5 )  

No matter how G depends on x and y we can make ~ (see (6.11)) 

as small as we like by making x close to y . Making ~ small forces 

it to be 0 , by (6.5). But if ~ 0 then G certainly cannot be 

analytic, by the formula for solving ~ = 0 , even for ~= 0 . 
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either 

or 

where 

2O 

cannot look like (6.3.) with (6.4) holding. This is to say, 

T = ~D (~) , ~,~x (6.6) 

C(o.~r) ~o , D(2.0) ~0 

Now q cannot be 0 as we have already noted, so C(z,w) = 0 is 

es good as F = 0 . This puts us back into (6.3)-(6.4). This leaves 

case (6.6), so ~ = 0 (zero interaction) or we again fall into (6.3)- 

(6.~). 
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ABSTRACT 

In the first section of this paper we define the concept of an At- 

tractor of a hereditary first order differential equation as an ordi- 

nary differential equation whose solutions are solutions of the heredi- 

tary one and can be interpreted as the asymptotes of its generic solut- 

ions. We define also the concept of Predictive Differential Equations 

associated with a class of hereditary ones depending on a coupling 

constant G as a first order differential equation which is such that 

all its solutions are solutions of the corresponding hereditary one 

and which is analytic in the neighbourhood of G = 0 . We report some 

numerical work proving that for some hereditary equations the corres- 

ponding predictive ones are Attractors. 

In the second section we consider the retarded electromagnetic equat- 

ions of two point charges and we prove numerically in a particular case 

that the associate Predictive Poincar~ Invariant System defined in pre- 

vious papers is an Attractor in an obviously generalized sense. Rough- 

ly speaking this means that the retarded electromagnetic equations of 

motion have a built-in mechanism which causes a spontaneous predictivi- 

sation of the causal interaction. 
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INTRODUCTION 

This paper is divided in two sections. The first one has been inclu- 

ded mainly to illustrate the concepts to be used in the second section, 

but the material that it contains could eventually be interesting for 

other purposes. 

We consider a hereditary differential equation of the first order 

and we remember some fundamentals of the ~heory of such equations as 

the integration method ef steps, and the regularization in the future 

of the solutions of the pure retarded equations. 

Calling a Reduction of order J an ordinary differential equation 

which is such that its solutions are also solutions of the hereditary 

one we define an Attractor as a Reduction of order J which is such 

that its solutions can be interpreted in an appropriate sense, as asymp- 

totes of the generic solutions of the hereditary equation. 

We consider a class of first order hereditary equations depending 

on a coupling constant G and we define the associate Predictive 

Differential Equation as a Reduction of order 1 which is analytic in 

G in the neighbourhood of G = 0 . A perturbation scheme is propesed 

to construct it. 

Finally, for some hereditary equations, we prove by a numerical 

integration following the method of steps that their ~ssociate Predic- 

tive Differential Equations are Attractors. This result means that 

there is a collapse of the infinite dimensional configuration space to 

a finite dimensional one. We refer to this collapse as the spontaneous 

predictivisation of the hereditary equation. The word Predictive is 

justified in the sense that sometime after the beginning of the inte- 

gration the Predictive Differential Equation and the value of the 

function at a given time permit to Predict to a good approximation the 

future of the solution. 

Obviously the concepts and methods of this first section can be easi- 

ly generalized to equations of higher order. 

In the second section we consider the hereditary (causal) equation 

of motion of two point charges. When the radiation reaction forces 

are ignored the corresponding dynamical system is of second order but 

strictly speaking it is of the neutral type and therefore no regulari- 

sation in the future of the solutions obtained by the method of steps 

is to be expected. Actually we prove that at some level of approximat- 

ion, and in two different meanings, there is such a regularization. 

The consideration of the radiation reaction forces introduces some 

complicationwhich we eliminate using the Order Reduction method. This 
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method reduces the third order hereditary dynamical system to a second 

order one which at the order of approximation that we consider is pure 

retarded (non neutral). 

It is known how to associate to such a dynamical system a Predicitive 

Poincar~ Invariant System (P.I.S.). We remember the usual procedure but 

we present also a constructive method which is closer to the concept 

of P.D.E. which we have presented in the first section and which is 

also better adapted to some numerical calculations. 

We have integrated numerically following the method of steps, the 

equations of motion of two equal mass charges having equal absolute 

values for a fairly large class of initial conditions leading to planar 

motions and we have seen that the P.I.S. is an Attractor in the sense 

that the relative difference between the retarded acceleration and 

the predictive one tends to zero beyond a certain time as long as the 

distance between the two charges remains larger than a few natural 

units. 

It was known that the P.I.S.'s associated with causal interactions 

permitted to deal with the finite dimensional space of solutions having 

the maximum smoothness. The numerical result reported in this section 

(we have proved a similar result for the gravitational interaction) 

seems to indicate that the theory of P.I.S.'s associated with causal 

interactions can be considered as an approximation which some time 

after the particles have been let free to interact becomes better and 

better as time elapses. To use an image drawn from thermodynamics we 

could say that the solutions of P.I.S.'s are the states of maximum 

entropy of the corresponding hereditary system and that retardation 

is the mechanism which pushes the entropy to increase steadily. 

This paper is meant to discuss some ideas at a qualitative level 

and not at a rigorous one. 



24 

SECTION I : EEREDITARY DIFFERENTIAL EQUATIONS 

I. Generalities [~ ~] [5] 

Let us consider the following hereditary first order differential 

equation with one unknown x and one independent variable t which 

we call time: 

~ = ~ [~, ~ ~ ~_~, ~_~) (I.i) 

where x t and xt mean the function x (t) and its derivative at 

the time t and where xt_ ¢ and xt-~ mean the same quantities at the 

time t-~ , r being a positive constant, and F a conveniently 

smooth function of its arguments. Equation (1.1) is of course not the 

most general equation we can think of, but this type of equations will 

be sufficient to illustrate some points. 

The initial value problem corresponding to equation (1.1) can be 

formulated as follows: how much do we have to know of the function 

x(t) for values of t less or equal to t such that this informat- 
o 

ion together with eq. (1.1) determine one and only one solution of class 

C ° for t greater or equal to t o ? If the function F did not de- 

pend on xt_~ nor ~t-~ the answer of course is that we have to know 

xt ° only. Instead if the function F depends on xt_ ~ or/and 

xt_ ~ the answer is that we have to know the function x t in the in- 

terval [t o -C, to]. The configuration space associated with eq. 

(i.I) is therefore the infinite dimensional space of all sufficient- 

ly smooth function X(t) defined in the preceding interval. 

The general procedure to solve eq. (I.I) is the following: First 

of all, as we have just mentioned, we have to choose an arbitrary 

function in the interval ~o - c , to]. Let us call this functi6n 

(t) . This choice gives then a meaning to the function F in the 

interval [to~ t o + ~] on which it becomes a function of t and x t- 

Therefore the equation (i.i) can be integrated in this latter interval 

as an ordinary differential equation. The general solution x(t;C) 

will depend On an arbitrary constant C which will be determined by 

the condition: 

~c~.) ~ x ~o, ~) (1.2) 

the corresponding solution gives then a meaning to the function F 

in the interval ~o + r , t o + 2 r ] and the procedure can be itera- 

ted. This method to integrate eq- (1.1) is called the method of steps. 

Clearly enough the solutions x(t) thus obtained will have a dis- 

continuous derivative x(t) at the time to because there is no 
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relationship, but accidental, between the past derivative at t o which 

depends on the initial arbitrary function ~ (t) only and the future 

derivative which depends on q (t) and the function F . If eq. (1.1) 

is of the neutral type, i.e., if F depends on xt- r the derivative 

will be discontinuous also at the time t o + n~ for all integers n . 

On the contrary if eq. (1.1) is of the pure retarded type, i.e., if 

the function F does not depend on xt_ ~ : 

(1.3) 
then the situation is as follows: there will be in general a discon- 

tinuity of x(t) at the time t but th£s derivative will be conti- 
o ~i) 

nuous from there onwards. More generally: the i-th derivative x 

will be discontinuous at the times t o , t o + ~ , .... , t o + (i-1)r 

and continuous from this latter time onwards. This sssertion follows 

very simply from eq. (1.3) and from the equations that we obtain from 

it by calculating the successive derivatives with respect to t : 

(1.~) 

this regularization in the future of the solutions obtained by the 

method of steps is an important property of the pure retarded equations. 

We shall see below that, at least in some cases, this property is the 

first step towards a deeper regularization. 

Important examples of pure retarded differential equations are the 

linear ones: 

G and H being constants• These equations have analytic elementary 

solutions in the interval ] -~ , + ~ [ of the form: 

X~ = e ~ (1.6) 

being a solution of the characteristic equation, i.e., the equat- 

ion which one obtains substituting (1.6) into (1.5) : 

= ~ + ~ e -~r (i.7) 

The main results concerning these equations are the following (we 

invite the reader to consult Bellman and Cooke's book for a complete 

and rigorous presentation of the subject): i) the characteristic 

equation has an infinite number of complex roots; ii) among the complex 

roots there exists always one which has the largest real part (this 
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would be false if the equation had been of the neutral type); iii) the 

general solution of eq. (1.5) obtained by the method of steps starting 

from an arbitrary initial function ~ (t) defined in the interval 

[- ~, o] can be represented as a linear combination of an infinite 

number of elementary solutions with coefficients which in general will 

be polynomials having a degree equal to the order of multiplicity of 

the corresponding characteristic root. 

2. The Concept of Attractor 

Let us consider again a hereditary equation of the type (1.1) and 

let us consider an ordinary differential equation of order J : 

(7-4) 

We shall say that eq. (2.1) is a Reduction of order J of the here- 

ditary eq. (i.I) if all the solutions of eq. (2.1) are solutions of 

equation (I.I). In some sense hereditary equations can be considered 

as ordinary equations of infinite order and therefore we might expect 

them to have reductions of any order. 

Definition. We shall say that a Reduction of a hereditary equation 

is an Attractor if its solutions can be imagined, in an "appropriate 

sense"~ as the asymptotes of the solutions of the hereditary equation 

for generic initial conditions. 

This definition is meant to give some general but only intuitive 

meaning to the concept of Attractor. But actually the "appropriate 

sense" we have referred to has to be made precise for each particular 

case. 

Let us consider the following linear equation: 

~ = M X4_ 4 ( 2 . 2 )  

The characteristic equation is: 

~/ = ~ e " ~  ( 2 . 5 )  

which has a simple real root if H > - #e . Let us assume that this is 

the case. Then: 

X~ : A e ~ (2.¢) 

where A is an arbitrary constant, is a solution of eq. (2.2) in the 

interval ]-~ , +~ [ . On the other hand expression (2.4) is the ge- 

neral solution of the following first order differential equation: 
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~ =  ~ ,~.~ (2.5) 

Therefore, when ~- defined by the characteristic equation (2.5) exists, 

eq. (2.5) is a reduction of order 1 of eq. (2.2). 

We have integrated numerically by the method of steps eq. (2.2), 

considering a variety of initial conditions ~ (t) in the interval 

]-l , 0 [ including linear functions, sinuisoidal, exponential or 

even aleatory data. The behaviour which has systematically been obser- 

ved, for values of H greater than -qe and not too large is that 

beyond a certain time the quantity @t = xt/xt defined by the nu- 

merical solution tends very rapiddly, as t increases, to a constant 

which is, up to the precision of the numerical integration, the real 

root ~ of the characteristic equation (2.3). It is this result which 

we interpret as saying that eq. (2.5) is an Attractor of eq. (2.2). 

Let us consider the following second example: 

The characteristic equation is: 

(2.?) 

This equation admits for any value of G the solution ~ = 0 and if 

G is positive it admits a second real root ~ which is negative if 

G4 1 and it is positive if G > 1 , Therefore whatever the value 

of G : 

2~ = A A: const. (2.8) 

is a solution of eq. (2.6) and if G>O then: 

;f%~ ~,~ ~ A,B : const. (2.9) 

is also a real solution of eq. (2.6). From eq. (2,8) it follows that: 

o (2.1o) 

is a Reduction of order 1 of eq. (2.6) for all values of G and eli- 

minating the constants A and B from eq. (2.9) and its first and 

second derivatives it follows that for G >0 : 

It • 

is a RedUction of order 2 of eq. (2.6). 

As for eq. (2.2) it would be of course very easy to construct Re- 
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ductions of any order of eq. (2.6). The two Reductions (2.10) and (2.11) 

have the particular supplementary interest that they are Attractors. 

In fact a numerical integration under the same general conditions as in 

the preceeding example has shown that for G, 1 the quantity xt 

calculated from the numerical solution, beyond a certain time tends 

to zero as t increases. We interpret this numerical result as mean- 

ing that eq. (2.10) is an Attractor of eq. (2.6). On the other hand 

if G> 0 it can be seen that the quantity ~t ~ ~t/it beyond a cer- 

tain time tends as t increases towards a constant ~ which is, up 

to the precision of the numerical integration equal to the non-zero 

real solution of the characteristic equation (2.7). We say then that 

eq. (2.11) is an Attractor of eq. (2.6) when G> 0 . Notice that in 

the interval G • ~O,l[ both eqs. (2.10) and (2.11) can be consider- 

ed simultaneously as Attractors of eq. (2.6). This can be so because 

for ~ 0 both function (2.8) and (2.9) have the same asymptotic 

behaviour. 

Of course for these two linear examples the concept of Attractor 

could be made precise, as it could be proved exactly that eqs. (2.5) 

and eqs. (2.10) and (2.11) are respectively Attractors of eqs. (2.2) 

and (2.6). The properties which we have mentioned at the end of the 

preceding paragraph give the hint for the definition and the proofs. 

But here we have preferred to remain at the level of intuition and 

conviction which can be attained by numerical calculations because 

this is the level at which we can raise ourselves in the discussion 

of highly more complicated problems. It is our feeling that the time 

is not ripe for a rigorous analysis. 

The importance for a hereditary equation to have a known Attractor 

is obvious. Not only does this means that we can construct some of 

its smoothest solutions it can have in the largest possible time in- 

tervals; it means also that, if we are not interested in the near 

future of the solutions after the end of the initial constrained mo- 

tion but we are interested only on their behaviour after a while, 

the Attractor can be considered as a useful substitute of the heredi- 

tary equation. 

3. The Associated Predictive Differential Equation 

Let us assume that the function F of eq. (1.3) is proportional 

to a coupling constant G : 

For this class of equations, which could be extended of course, we 
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shall introduce the concept of Associated Predictive Differential 

Equation (P.D.E.) according to the following definition. 

Definition. Let us consider an ordinary first order differential 

equation depending on the coupling constant G 

~ = ~ ~, ~ .  G~ (5.2) 

We shall say that eq. (5.2) is a P.D.E. associated with the hereditary 

equation (5.1) if i) eq. (5.2) is a Reduction of eq. (5.I) and ii) 

for small values of G the function ~ can be developped in power 

series of G of the following form: 

(.) 
~[~,~: ~) = G. ~ [~ ,~  + G~.t~[~,X~)+,,, (5,3) 

i . e . ~  w i t hou t  a zero power term. 

According to this definition eq. (2.5) is a P.D.E. associated with 

eq. (2.2) and eq. (2.10) is a P.D.E. associated with eq. (2.6). 

For equations more complicated than eqs. (2.2) or (2.6) it might 

be difficult or impossible to obtain corresponding associated P.D.E. 

Therefore it is important to set forth a perturbation algorithm to cons- 

truct approximate ones. To do it we shall make some supplementary as- 

sumptions. To each hereditary equation satisfying them, it will corres- 

pond then to one and only one formal associated P.D.E. Let us write: 

For each value of k each of these approximate P.D,E, can be inte- 

grated backwards considering x t as initial condition corresponding 

to time t . Let x ~k}t_¢ (t~xt;G) be the function which gives the value 

of the solution of (5.~) at time t-r as a function of t~ x t and 

G . We assume that these functions can be developped also as a power 

series of G in the following form: 

and that 

(3.5) 

9{~ 9 if &_z ~ [k,M') (5.6) 

in which case we shall write 

Substituting then the formal expansion: 

(3.7) 
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= + .... (3.8) 

into eq. (3.1), expanding and identifying with eq. (3.3) gives the 

necessary relations to identify the coefficients ~¢"~ . The first one 

is: 

(~,~ = W (~,~; x~ (3.9) 

This is the only trivial step of this algorithm. The next one would 

consist in calculating ~(1) by integrating the first order approxi- 

mate P.D.E. (3.4) . The feasibility of working this out exactly will de- 
pend of course on each particular case. But ~c4~ as ~c-~ can always be 

calculated at the appropriate level of approximation. 

This method applied to eq. (2.6) leads ~rivially to eq. (2.10). 

Applied to eq. (2.2) it leads to an infinite series whose sum is eq. 

(2.5). Eqs. (2.5) and (2.10) are therefore the P.D.E.'s associated res- 

pectively with eqs. (2.2) and (2.6). 

Let us consider the following hereditary equation: 

(3.1o) 

According to eq. (5.9) the first order P.D.E. associated to it is 

Integrating this equation we obtain for sufficiently large positive 

values of x t : 

×~q = (~#- ~r) v~ (~.12) ~-~ 

Assuming now that: 

we obtain 

~_~r ~ ~ (3.135 

(3.14) 

and the second order associated P.D.E. 

We expect of course this equation to be a good approximation of an 

exact P.D.E., supposed to exist, for large values of x t only. 

We have integrated numerically eq. (3.10) for a variety of initial 

conditions and we have examined more particularly the evolution of 
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the quahtity~ 
~_ ~2] 

We have seen that when the quantity (3.13) remains small compared to 

1 that beyond a certain time the quantity ~t tends to zero. We 

interpret this result as saying that in the appropriate domain of con- 

figuration space the approximate equation (3.15) is an Attractor of 

eq. (3.10). 

We ~ have considered three examples of first order hereditary diffe- 

rential equations, namely eq. (2.2), eq. (2.6) and eq. (3.10) of the 

type of eq. (3.1). In the three cases we have seen that the correspon- 

ding associated P.D.E. (second order approximation for eq. (3.10)) 

was an Attractor in an appropriate, Self explanatory sense. We consider 

this finding, which has its root in the very meaning of the perturba- 

tion constructive method we have presented, as an indication that one 

of the most relevant questions that we can ask in connection with a 

hereditary equation is the following: Is it possible to construct the 

associateP.D.E. (exactly or approximate)? If yes, is the associate 

P.D.E. an Attractor? 
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SECTION II : TEE ELECTROMAGNETIC INTERACTION 

1. Equations of motion of two char~es 

Let us consider two point-like electric charges e a (a=l,2) with 

masses m a and let: 

t~ : ~ = ~ (~ (~,~,..= o,~,z,~ (1.1) 

a being the proper times, be the parametric equations of their 

time-like future oriented world lines. We shall use the signature 

+2 of Minkowski space-time and a system of units such that e = 1 . 

Therefore we shall have: 

' d ~  (1.2) 

and Ua ° ~ 0 by definition of future oriented. 

If no other interaction nor constraint, besides the electromagnetic 

interaction, is acting upon the charges; if we assume causality; and 

if we neglect radiation reaction forces (later on we shall take them 

into account), then the functions (1.2) must be for ~ a large enough, 

i.e. beyond the initial constrained motion, solutions of the following 

system of hereditary second order differential equations 

where: 

dr~ 

A - 2  (' ~ 4 ,~ A ^ (  

where: A 

; 9~4, 

A A 
A -- -- ! 

u., = U..,...,) i., - - (I.-D (1.5) 

Xaa, being the intersection of the world line of particle a p with 

the past light cone wlth vertex at the polnt x a , Uaa s and ~a' 

being the unit four-velocity and four-acceleration at the point ~aa p 

and round brackets indicating scalar products. 

Equation (1.3) express that each particle a obeys the Lorentz 

equations of motion corresponding to the retarded field created by 

particle a z. They are hereditary equations as are the ones we have 

considered in the first section but highly more complicated: they 

involve a larger number of variables; they are of second order; they 

are a~__system; they are of neutral type (the functions ~ contain 

the ~2ap); and the retardation is of a functional type. Nevertheless 
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as we shall see we can use similar concepts and apply similar methods 

to analyse these equations. 

The method of steps can be applied to construct solutions of class 

C 1 of equations (1.5). For this it is necessary to enlarge the system 

of equations (i.5). Let ~F sa' be the value of Tap corresponding to 

the point ~a~aJ. This value of ~aa' is a function of r a and de- 

riving the relation: 

[×~c~ - ×4, ~ t~,)] ^ [ ~ c~J - ~,~c~,)]^ = o (1.s) 

with respect to ~a we obtain that this function has to satisfy 

the following differential equation: 
A 

= %., (1.7) 

which we consider simultaneously with eqs. (1.3). Let us assume now 

that we are given two pieces of time-like future oriented world lines 

with parametric equations: 

to.- ~: = W~ cr.,.> (1.s) 

in the intervals r~ G [T~ +, r,-] , ~-~ being such that: 

[~¢~:) - ~I t~&)] [ ~c~f) - ~,~ c~j~] = o (1.9) 

~b give a meaning to the right-hand sides of eqs. (1.3) and (1.7) 

as functions of x~a 9 u a~ and d.aa ,'~ ~ as long as the past light cone 

with vertex at the point xa~ intersects ['a'" Therefore in the co- 

rresponding r b intervals these equations can be integrated as a 

system of ordinary differential equations. The initial conditions for 

x~ are of course ~" ( + a T a ); those for u a are taken to be 

td@,~r~) |r/) to have C I solutions; and the initial condition for 

~aa p is necessarily ~ . We obtain thus two new pieces of world 

lines which can be used as initial data for a new step. 

The equations of motion of two charges are in fact simpler in a 

particular well-known case. Let us assume that the initial world lines 

~a lie both on a single time-like 2-plane~ i.e., the initial space 

motion is restricted to one rectilinear space dimension. Obviously 

then the entire solution (both k a ) will lie on the same 2-plane. 

This means in particular that ~a' will be a linear com~ination of 
~a~a, ^~ and Usa, : 

The substitution of such expressions into eqs. (i.~) yields the fol- 

lowing result : 
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A A ~ 

W2 = e~ ~ ~-' r.. ^ ' (k~ I~, ~ -~, ~.,) (ill) 

therefore for rectilinear motion the hereditary electromagnetic dyna. 

mical system(l.9) is much simpler than in the general case. The sim- 

plification comes in by the fact that the number of variables is re- 

duced but also by the fact that the expressions (1.11) no longer de- 

pend on the retarded accelerations and therefore the corresponding 

dynamical system is of the pure retarded type. 

Because of thfs result an analysis similar to the one we made in 

the preceding section proves that in this particular 3ase there is 

a regularization in the future of the solutions obtained by the method 

of steps in the sense that after the i-th step the solution is of 

class C i+l 

2. Resularization of the solutions in the future 

In the general case where the dynamical system (1.3) is of the neu- 

tral type there is of course no exact regularization. Nevertheless we 

shall see in this paragraph that even in this case there exists an 

approximate regularization in at least two meanings. 

Let us use the notation ~ to indicate the discontinuity of ~ 

at the end point on L~ of one step, and let us use the notation 

~aa" to indicate the discontinuity of the acceleration at the corres- 

ponding retarded point. From eqs. (1.3) and (1.$) it follows that: 

A 
^-4 ^ -4 

- ~. ~.~, ( 2 . 1 )  

where: 
A 

(2.2) 

Considering the square of both members of eqs. (2.1) and taking into 

account that: 

~ ,  , . . . , )  ---o ~ . . ,  = o  ( 2 . 3 )  

we obtain: 
A A ~t A& ^ -~. A 

~ = ~,, ,  . - r , , . .  ( h . ,  ~ .~ ,  ( 2 . ~ )  

from which it follows the inequality: 

(2.5) 
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~2a I is the discontinuity of ~2t just one step below and therefore 

the preceding formula can be iterated. Using the notation ~ai to 

indicate the discontinuity of ~[~ at the^ end of the i-th step 

and similar self-explanatory notations Kana~_l_ we can write: 

if n is even, and: 

- ( 2 . 7 )  

if n is odd. The quantities Kaa z are the ratio of two quantities: 

- ^ 2 .~-l The first ones are natural lengths e a e a,ma I and ~aa' aa' " 

associated with each charge. The second ones are sort of distances 

between the particles (they would be exactly the proper distance bet- 

ween the two charges if these were constrained to best relative rest). 

It turns out that the Kaa, are very small compared to 1 as long as 

the distance between the particles does not become extreme]y small. 

Therefore eq. (2.7) tells us that the quantities . l~an I will tend 

numerically very rapidly towards zero. Since ~a and therefore ~ 

are space-like vectors we can conclude that these discontinuities 

themselves will tend to zero~ even if strictly speaking they will never 

be zero in the generic case. 

For n large enough we can assume that the accelerations are con- 

tinuous. Assuming this and deriving eqs. (1.4) with respect to U a 

we can use a similar argument to discuss the evolution of the disconti- 

nuities of the derivatives of the accelerations. This leads to the 

conclusion that these discontinuities tend to zero also as n increa- 

ses; a conclusion which can then be extendgd obviously to the discon- 

tinuities of the derivatives of any order. We have therefore a regu- 

larization of the solutions in the future. 

There is another approach which leads to the conclusion that there 

is an approximate regularization in the future of the solutions of 

eqs. (1.5). Let us assume that we have integrated these equations by the 

method of steps and let us consider expressions (1.4) beyond the first 

step. The accelerations ~a' will then be a function of the coupling 

constant eaea, , vanishing when this constant vanishes. We shall as- 

sume that ~$a' can be represented by a power series of eae a, of the 

following type: 

~,= ~, + 3~, +,,,+o~, ~ (2.8) 

the n-th term being proportional to e aneatn . Substituting this power 
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series into expressions (!.~) and keeping first order terms only we 

obta in: 
^ ~ ^ ^~ 

w;"'<- &9 (2.9) 
These equations a r e  identical with eqs. (I.II) ex¢ept that here the 

variables are not restricted to one dimensional ~eotilinear motiDn. 

The dynamical system (I.~) corresponding to the approximation 62.9) is 

of the pure retarded type and therefore we know that there will be S 

regularization in the future of its solutions. 

This conclusion can be extended to a higher approximation of system 

(1.5). In fact, let us consider the second order approximation of 
~ ( l , 1 )  

expressions (1.4), i.e., let us keep the first order terms ~aa" 

on them. From eqs. (2.9)we know that beyond the second step these 

quantities can be written as : 

~.4) ^_% ^ ~ ~ a 
= ( 2 . 1 o )  

I , ~ o , , ~ =  ~, , ,~,  - ~ , , , , , , ~  ; I ~ . , , ~  =-(a~,,, ~...,.,,) 
^ ~ , )  (2.11) 

~ : a l s  being the i n t e r s e c t i o n  of the w o r l d - l i n e  L a w i th  the past 
^ ~ an& Usa, being the unit null cone with vertex at the point Xaa ~ 

^~ 
four-velocity of particle a at the point Xaa,a . Let us consider 

the straight-line passing through the point x a in the direction of 

u ~ and let ~::i a be the intersection of this straight-line with 
a ag 

the past null cone having its vertex at the point Xaa,. Since when 

^~ and x A~ coincide we can eaea~ vanishes the two points Xaa, a aa'a 

assume that these components differ by quantities which are of first 

order, and thus we can use "'aa'~ a instead that *Xaa t ~ a in eqs. (2.10). 

A similar argument proves also that we can use u~ instead of ^~ UaaP a • 

These two substitutions lead to the following modification of eqs. 

(2.10) 

and we obtain finally the following second order approximation for 

expressions (1.4): 

^f , .  A 
_Q,@~, 6 ~ I  ~ '  ~ ,  W2 I~.~) (2 .13 )  

where the notation in the left-hand-side means that all terms up to 
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second order have been included. 

The system of equations (1.5) using expressions (2.13) as an approx- 

imation of expressions (1.4) is again of the non neutral once retarded 

type. Therefore we know that at this approximation the solutions obtain- 

ed by the method of steps will become smoother and smoother in the 

future. 

3. Radiation reaction forces 

The concept of Order Reduction is partially contained already in 

Landau's and Lifshitz book [4] in connection with the Lorentz-Dirac 

equation of a charge in an external field, but as far we know the first 

paper where the concept was clearly introduced in connection with the 

preceding problem but also in connection with the two-body electromag- 

netic problem, was in Kerner's paper [5]. We are going to present this 

concept in a simplified context using the point of view of Sanz [6], 

Iv]. 
Let us consider the following ordinary differential equation: 

where G is some coupling constant and W a sufficiently smooth 

function of its arguments. Eq. (5.1) is a seqond order differential 

equation. But equivalently we can say that eq. (3.1) represents a fa- 

mily of first order equations 

being the general solution of the partial differential equation: 

=  ,(v44 - -  

Let us assume that a physical quantity x has to evolve in accordance 

with eq. (5.1). If we are sure that no other condition restricts the 

variable x then our job would be, say, to find the solutions of eq. 

(5.I) directly, or to find first the solutions of eq. (5.5) and to 

find then the solutions of eqs. (5.2). On the contrary if we have 

other physical constraints on the system then eq. (5.5) will have to 

be considered as a condition amon 5 others to determinate the eq. (5.2) 

which will describe our physical system. Let us assume for example 

that ~t is a measurable quantity which by its very meaning or be- 

cause of other principles of the theory has to vanish with G or, 

say, has to be a very smooth function of G . If we express this 

condition by saying that the function ~ can be represented by a power 

series of G : 



then substituting this power series into eq. (3.3) gives all the coef- 

ficients without any ambiguity. The first ones being for instance: 

Of course for some simple cases an exac~ construction is possible. 

Let us consider, for instance, the differential equation: 

The complete family of first order differential equations equivalent 

to the second order one is: 

~ = ~G (~÷~) 4 ~ e ~IG (3 .7 )  

where C is an arbitrary constant. Among these equations the only 

one having the property of having a second member analytic in G in 

the neighbourhood of G = 0 is : 

The pro~ess which consists in substituting eq, (5.1) by eq. (5.2) 

with the right~hand-side being a solution of eq. (3.3) and being ana- 

lytic in G in the neighbourhood of G = O is called the Order Re- 

duction of the equation: of course this concept can be used in more 

general cases including the hereditary equations (which as we mention- 

ed in the first section, can be formally considered as ordinary equat- 

ions of infinite order) and, as we shall see in a moment, the dynami- 

cal system of two electric charges when the radiation reaction forces 

are taken into account. 

We know that when the back reaction of the radialion on two electric 

charges cannot be neglected the dynamical system (1.3) has to be re- 

placed by: 

dT~ - ~"~ ~ \~ + ~Z~ (5.9) 

with W a given by expressions (1.@). This system of equations is 

of third order but eqs. (5.9) are by no means the only equations which 

govern 9he evolution of two charges. We believe that it would be rash 

to fomget at this level of the very foundations on which melativistio 

dynamics is based. If one of the charges, say e a , is non zero but 
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the other one ea/ is zero then the two particles are uncoupled and 

they should, according to the Principle of Inertia move freely. This 

is not necessarily the case for particle a according to eqs. (3.9) 

and therefore the Principle of Inertia has to be enforced by a supple- 

mentary condition. The best way to do it is to say that the real dyna- 

mical system which governs the evolution of two charges is not the 

system (3.9) but its Order Reduced one. This is the point of view we 

take up here. It also takes into account this fundamental idea that 

second derivatives are related to forces, i.e., quantities which we 

expect to have measures depending smoothly on the intensitY of the 

int era ction. 

Actually we shall not reduce the exact system (3.9) but 

with W~ [21 being the second approximation (2.13) of W# which we 

have calculated in the preceding paragraph. Moreover we shall push 

the perturbative construction of the reduced system only up to the 

maximum order which is consistent with the approximation _r~f] . That 

is to say we shall calculate the terms which are at most proportional 

to the product of four charges. We could proceed as indicated at the 

beginning of this paragraph but we can also argue directly as follows. 

By its very structure the lowest order term of the right-hand-side of 

eqs. (3.10) is a term proportional to eaeazand therefore the lowest 

order term of the second term of the right-hand-side is proportional 

to e ea~. Therefore we can write directly that 

(3.n) 

~ (l,1) where W a is given by eqs. (2.9). The derivative with respect 

to T a is a total derivative, i.e., the variables which refer to 

particle a ~ are considered as functions of ~a also through their 

dependence on ~aa p . Using eqs. (1.7) a straightforward calculation 

= _ -' t ^-I ~ A.I ^ ~(~,,4) 
gives- w¢r.  -,--,,.. ÷ 

^ - . . 1  ,4 - -  ~. ~ , , ,  , . ,~-  w.,,,~,/ ( ~ .12 )  
,4- O, 

In our opinion the system of differential equations: 

d.__~ ~ : ~ [ z ~  

drA 
(3.13) 
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is the dynamical system which has to be used to describe the electro- 

magnetic interaction of two-point-like chargesat the second order 

approximation. It includes the radiation reaction forces consistently 

at the same order. It is of the non neutral, onceretarded, type and 

therefore we know that at this approximation its solutions obtained 

by the method of steps will become smoother amd smoother in the future. 

4. Associated Predictive Poincar~ Invariant S[stem 

The concept of a Predictive Poincar~ InvariantSystem <P.I.S.) as- 

sociated with a causal interaction, electromagnetic or other, has been 

available for some time. We refer the reader to E8], and the referen- 

ces therein, and to [9] and [lO] for the case of the gravitational in- 

teraction. Nevertheless to make this paper s~lf-contained we shall 

present briefly this concept again for the case of the electromagnetic 

interaction at the approximation that we hsve considered in the prece- 

ding paragraph. 

Let us consider a two body newtonian-like dynamical system: 

(a,b,c= 1,2 ; i,j,k,.. = 1,2,3) 

with 

and let 

; O (4.2) 

be its general solution. Let us consider a galilean frame of reference 

of Minkowski space-time M 4 and let us consider the family, of pairs 

of world lines depending on the 12 parameters (X~o , V~o ) : 

By definition the system of differential equations (4.1) is a P.I.S. 

if the family (4.4) is invariant under the usual realization of the 

Poincar@ group acting on M 4 . It is known that a necessary D1], ~ 

and sufficient ~3] condition for system (4.1) to be a P.I.S. is that 

the functions a i satisfy the following system of non-linear partial 
a 

differential equations (Currie-Hill equations): 

- 0  ; ~ - = 0  

, ~o (4.3) 
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• (¢.5) 

where ~ i j k  i s  t he  L e v i - C i v i t a  t e n s o r ,  ~b = 1 and where we have 
appliedEinstein's sommation convention for both types of indices. 

Let us consider the following-autonomous system of ordinary dif- 

ferential equations on Me . 

We know ~¢] that a sufficient condition for this system to be locally 

equivalent to a P.I.S. is that the functions ~'~ satisfy the Droz- 

Vincent equations 615] : 

,¢,~,. ~; ~ f ,  ~, . . ,1, ,  r)X~ ? + • = 0 ( ¢ . 7 )  

the constraints : 

~ ; ~  , ~ . f  = o (¢.8) 

and the equations expressing that they are vector functions of vector 

arguments : 

~ b  ~-9~---~-~ = o 

") X~' K~, r -  r..)X~." r.-).lXl~ -,"~/,1'-'-~(," ~i'P 
The correspondence between the functions a i a 

lows. If the latter are known we obtain the 

and ~ is as fol- 

aai by--~the formulae: 

(¢,lO) 

where the notation ~: means that the variables 

been restricted to the values: 

~; = 0-~] '~ , ~2'  ~ ~ :  ~" I 

x #  and Ub~ have 

(~.ll) 

In a contrary direction if we know the a i a we obtain the 

formula e : 
~,,,; (×#, ~ )  °'-- ,: , - (#,J (L .+  u,:(*,,,.) ~,:(X~o, ~ ;  ; ~ ' )  '~ 

~a ~ by the 

(~.12) 
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the (X~o, ~co ) being these functions of (Xb~ , U~c) 
obtain solving the following equations: 

o - ,  - ' ! 

which we would 

(¢.13) 

Any P.I.S. can thus be discussed using two formalisms. We call the 

original one for which the system is a Newtonian-like one the Manifes- 

tly Predictive Formalism. This is in our opinion the formalism of re- 

ference for any physical interpretation because it makes transparent 

that the space of initial conditions (the co-phase space) is twelve 

dimensional, i.e., the formalism does not use spurious degrees of free- 

dom. We call the equivalent version of it for which the system is of 

the type (4.6) the Manifestly Invariant Formalism. The conditions (4.7) 

and (4.8) are not necessary to have equivalence between a Manifestly 

Predictive P.I.S. and a Poincar~ Invariant System of equations of the 

type (4.6). There exists other versions of the Manifestly Invariant 

formalism (See for instance reference [17], but others can be construc- 

ted): each one corresponding to a different method of eliminating 

the spurious degrees of freedom. In this sense the Manifestly Invariant 

formalism which we have presented here is less "intrinsic" that the 

Manifestly Predictive one. Nevertheless it leads often to simpler cal- 

culations and has a rich inner structure which makes this formalism 

very useful. We shall use it to define the concept of the P.I.S. as- 

sociated with the hereditary dynamical system (3.13). We shall say 

that a P.I.S. 

~= = 

where the functions ~ ~ depend on the charges e a , is the P.I.S. 

associated with the dynamical system (3.]3) if i) it is one of its 

reductions, i.e., all the solutions of eqs. (~.14) are solutions of 

eqs. (3.13) and ii) the functions ~ can be developped as power 

series of the charges of the following type: 

where w~(r,s) means a term proportional to r s a ~ e a ea/. The assumption 

that the terms ~a'(P'q) are zero for p or q = 0 is essential 

and it expresses of course that the reduction (~.l~) has to be com- 

patible with the Principle of Inertia when at least one of the charges 

is zero. The usual construction of the series (~.15) up to second order, 
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i.e., up to terms containing four charges uses the fact [8~ that the 

functions ~ have to be solutions of the following system of integral 

equations : 

where : i) 

& . . , -  - , , . . )  - , 

(~.16) 

ii) 

a s  follows: 

A~ 
and iii) "~[2]~Wa is the function (5.12) with the variables Xaa/ 

and ~s" ' replaced respectively by Xa~ + ~ aa' u~ and ua~ . Since 

Ra~) is a shift operator which acts on the functions 

the lowest order of the integrals in eqs. (~.16) is proportional to 

the product of two charges these equations are the basis of a recu- 

rrent algorithm to calculate the series (~.15). The first order approx- 

imation is: 

the explicit expression of the terms ~(i,I) can be found in [14, 

~9] and that of I: (3'1) in ~ . The other terms of order 2 are 

zero. Since the quantities W2 [2]- are themselves limited to second 

order it would be meaningless in this case to proceed to the calcu- 

lation of higher order terms. 

Let us assume that the system (~.l~) is the P.I.S. associated with 

the hereditary one (5.15). Considering the solutions of (4.1%), the 

quantities Xaa, ~ and ~ , defined in paragraph I can be considered 

as functions of (x~ , u~) . Another construction of.the series (~.15), 

first considered in reference [14, uses the fact that these functions 

have to satisfy the functional equations: 

and be solutions of the following system of integral equations: 

= ({,t • 

Since the lowest order of ~ is proportional to e a e a ,  from these 
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equations we obtain: 

therefore we shall obtain ~(l,i) by substituting in the right-hand- ~a 
side of eqs. (~.20) Xaa ,*~ * and u~t , by its lowest order expressibns 

(~.22). This is the same construction which led to (4.19). Expressions 

(4.19) and (4.22) can now be used to calculate the corresponding ex- 

pressions at the next order. As we see, this method is closer to the 

method that we have presented in the first section of this paper in 

introducing the concept of P.D.E. associated to a hereditary one. We 

said there that the possibility of pushing the construction would de- 

pend on each particular case. Since the construction above does not 

really depend on the particular form of the functions -Wt ~] ~ we see 

here that for a large class of causal interactions there exists a uni- 

versal perturbative method to construct their associate P.I.S. 

5. Spontaneous Predictivisation 

Numerical solutions of the equations of motion of two electric 

charges, taking into account or not the radiation reaction forces 

have been obtained and discussed in the one space dimensional case by 

various authors [2~ - [2~ . We consider here the problem of integrat- 

ing the hereditary equations of motion (5.151 using the method of in- 

tervals (in this paragraph we shall say interval instead of step. The 

word step instead will have its usual meaning in numerical integrat- 

ion language) assuming that i) the two charges are equal or opposite 

and have the same mass m and ii) there exists a frame of reference 

for which the space trajectories of the initial world-lines /-a are 

such that a) the middle point of the segment joining the two particles 

is fixed, b) they are symmetric with respect to it, and c) both 

trajectories lie on a plane, say I~ . 

We have used the distinguished frame of reference of point ii) above, 

choosing as origin of coordinates the fixed middle point. We shall 

designate by ~ the two components vector position of one of the 

particles, say a , at time t on Ir . Then -x will be at any 

stage of the integration the position at time t of particle a t . 

Similarly ~ and -u will be respectively the space components of 

the unit four-velocities of particles a and a j at time t . We shall 

designate by ~ and t the coordinates of the retarded event on 

corresponding to an event (~,t) on L a . We shall use as unit of 

length e2/m where e is the absolute value of the charge of either 

particle. (We remember that we have taken c=l ). 
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Using these notations and conventions the hereditary dynamical sys- 
tem (5.15) can be written as fol~ows: 

a =  ' d ' -~  -'- 

with: 

where 

where: 

A@ ~% c,.,L [_o, 

G is +i for equal charges and -1 

(5.1) 

(5.2) 

for opposite ones, and 

with: 
"" ~ = 2 .~"  ~b '~. ~ , ~ ' ) " ,  , 4 ~  - 01+  ~ o ~  

The time coordinate will be given by the equation: 

~ ~o ~-~ : ( ~ . 5 )  

To feed the hereditary system (5.1) with initial conditions satis- 

fying the conditions that we stated before we have assumed that during 

their initial constraintinterval each charge had been pulled with a 

constant force having the direction of the velocity. More precisely 

we have assumed that during this interval of time the parametric equat- 

ions x ( r ) of particle a were solutions of equations: 

- -  = ~'~-~ ~ ( 5 . 6 )  

where K is a constant. Starting with initial conditions T ° , u-- ° 

at t=O we have integrated backwards in time these equations until 

we have reached the retarded event (~N' tN) corresponding to the 

event (-~,0) which is the initial position of particle a t N @ 

indicates here the number of steps of the corresponding interval. We 

have used a variable step size version of the elementary Euler's me- 

thod. Let (~B' tB) be the event corresponding to the end of the 

B-th step. The step size ~rA between the events (~A+l,_ tA+ l) and 

(~A, tA) has been chosen to be 



46 

(5.7) 

Let us consider the straight world line passing through the event 

(-~A' tA) in the direction of (-U"A'U~) " /~A is equal to the 

proper time measured along this straight line between the event 

(-~A,tA) and the intersection of it with the null past cone with 

vertex at the point (~o,0) divided by N-A . The quantities U-~B 

(B = 0,.., N), A~ A (A = 1,..., N) , ~N and t N from which all 

relevant information concerning the initial interval can be recovered, 

were stored for future utilization. 

Using the initial conditions F a constructed as we have just men- 

tioned we integrated the hereditary equations (5.1) by the method of 

intervals using a variable step size version of Euler's method. Let 

us call (~B,J , tB,j ) the coordinates of particle a at the end 

of the B-th step of the J-th interval. The size of the step 

AWA,I+ 1 between the events (~A,I+l' tA,I+l ) and (~A+l, I+l' 

tA+l, i+l ) was taken to be: 
A 

+[ (~A'~.''~':'^ "~-~ ^ ~ 1 ~A,z+4~-~,Z ÷ Q ~,x+~A,z~LA,~+~ (5.8) 

where: 

A ~ A 

and where A,I+l ' _~.I+l ' _.CA,I+I and ~A, I+l are the quanti- 
ties defined by eqs. (5.4) corresponding to the event (~A,I+l~ 

tA,i+ l) . The choice (5.8) guarantees that the event (XA+l, I+l' 
tA+l, i+l ) will be in the null future of the even (-~A+i,I' tA+l,I) 

in the world line of particle a i . L 2 is in principle zero but 

because of the unaccuracy of the numerical integration, it is not 

exactly zero. It is therefore necessary to include it in the expres- 

sion of ~A,I+l to prevent a systematic error in the calculation. 

At the end of each step we have calculated the acceleration ~[2] 

of the corresponding second order associate P.I.S. We have not used the 

explicit available expressions because they are cumbersome. We have 

insteadproceeded as follows. We have integrated backwards in time, 

using again the variable step size version of Euler's method, with 

~A given by eq. (5.7) , the first order P.I.S. associated with 

the hereditary equations (5.1). Taking into account eqs. (4.19) this 

system can be written: 
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* (zm'] "'z" (5.1o) 

with initial conditions (~t,t) we have integrated these Starting 

equations until we reached the event (~N,tN) which is in the null 

of the event (-~,t) . We have then used these data and past eqs. 

(5.2) to calculate theOnumerical value of ~ [2] . These quantities 

should coincide with the numerical values obtained from the explicit 

cumbersome expressions modulo third order corrections. 

We have considered the two following quantities: 

I .4oo . s .  a-  i m.l C;  I (5.11) 

which give respectively the percentage difference between the modulus 

of -'[2~W and ~ [21 , and the sine of the angle between these two 

vectors. The systematic behaviour that we have observed for a variety 

of initial conditions and values of K is that these quantities tend 

to two small values D , S which depend on each particular Case. 

These values are zero if the distance between the particles increases 

without limit. They are small but non zero if this distance is bounded 

from above. This being due in our opinion to the fact that ~ C21 it is 

only an approximate expression. At the end of the first interval the 

values of D and S are already quite close to their limits. This 

is connected with the disappearance of the discontinuities of the ac- 

celerations at the end points of the first interval. We give below the 

numerical data that we have obtained in one particular case (G = -1) 

which illustrates these remarks. The initial conditions are: x=O, 

y=6 , Ux=0.25 , Uy=O , and the value of K=-0.2 . The number of 

steps of each interval is 8 (we have used a 519 registers version of 

an H.P. 41C). 

n (steps) x y D S 

2 0.58 5.99 27.3 
4 1.05 5.95 46.6 
6 1.95 5.84 54.0 
8 2.76 5.69 - 5.7 

lO 5.11 5.59 - 3.6 
12 5.75 5.59 - 2.9 
14 4.55 5.05 - 1.4 
16 5.27 4.65 - 0.8 
18 5.58 4.45 - O.8 

o.3 
0.3 
0.5 
l.llO-~ 
1.11o-  
9.glO-~ 
4.810-~ 
1.410-  
1.310 -w 
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The behaviour of the quantities D and S becomes quite different 

if the distance between the charges becomes too small. This, in our 

opinion, comes again from the fact that ~2~ are only approximate 

quantities unreliable at small distances. 

We conclude from all this work that the electromagnetic correspon- 

ding to interaction becomes spontaneously predictive, i.e., the P.I.S. 

~ [21 is an Attractor of the hereditary system (5.2) as long as 

the motion of the charges remains confined in a domain of configurat- 

ion space for which the distance of the charges is not too small. Our 

numerical exploration would have to be extended and improved to make 

more precise statements in particular abouth the border limiting the 

domain beyond which there is no spontaneous predictivisation. 

We have done a similar work with the gravitational interaction and 

we have reached similar conclusions. Spontaneous Predictivisation is 

therefore a mechanism which works for the very simple examples that 

we have considered in the first section and for the Electromagnetic 

and Gravitational interactions. Would it be too rash to conjecture ~6] 

that it is a universal mechanism connected with pure retarded equat- 

ions? 
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FORMS OF RELATIVISTIC QUANTUM DYNAMICS 

(Particles vs. Fields) 

F. Coester 

Argonne National Laboratory + 
Argonne, IL 60539 

A systematic presentation of relativistic quantum mechanics usual- 

ly begins by specifying the properties of an algebra of operators 

called "observables". It is then assumed that the principles of rela- 

tivity require that this algebra be generated by local fields. Indeed, 

theories in which the algebra of dynamical variables is generated by 

the canonical coordinates and momenta of particles lead to unaccePtable 

conclusions if one assumes that the canonical coordinates are obser- 

vable particle positions 1. That assumption is not necessary. In the 

absence of long-range external fields, only asymptotically free par- 

ticles are actually observable. The results of a scattering theory 

arethe observables. The general framework of relativistic scattering 

theory can accommodate either elementary fields or elementary particles. 

My aim in this lecture is to contrast relativistic field theories and 

particle theories and to show how particle dynamics can be construct- 

ed in agreement with the requirement of cluster separability 2. 

It will be convenient to introduce the general framework and the 

notation by reviewing the assumptions and some results of an abstract 

scalar field theory 3'5 , without emphasis on mathematical rigor 5. 

1. The Hilbert Space 

The states ~ are vectors in a Hilbert space ~ . 

2. The Field 

All dynamical variables are functionals of a local scalar field 

A(x) , x = {~,t] ; the fields commute for space-like separations. 

+ This work performed under the auspices of the U.S. Dep. of Energy 
under contract W-31-109-ENG-38. 
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[ A c.), Ac.')] = o 

f o r  ( x - x ) 2  = ( ~ _ ~ ) 2  _ ( t - t ) 2  > 0 . 

(1) 

3. Poincar~ Invariance 

The relativistic transformation law of the states is given by s 

continuous unitary representation U(d,•) of the Poincar~ group, 

and the field A(x) satisfies the covariance relation 

U ~ , ^ ) .  Aixl. U -~d ,^ )  = A (^~.d)  (2) 

The generators of the infinitesimal transformations are ~,H for 

the space and time translation, ~,~ for the rotations and Lorentz 

boosts. The set of all ten generators is denoted by G , 

G = t ~ , . ,  ~ , ~ ]  (3) 

The generators satisfy the commutation relations 

[~, ~]  = o , [~ ,  ~1 =o 

m 

[ ~.., K:1 = i ~. 6<.. K. 

(~) 

($) 

(~) 

(?) 

(8) 

It follows that H and J,K 

~P~} and as an antisymmetric tensor { jpv} 

j12 = J3 " 

$. The Vacuum 

There is a unique invariant vacuum state 

5. The Physical Interpretation 

transform respectively as a four vector 

, where joi = Ki and 

Io> , U(d,A) Io>= Io>,. 

The operators J,P and H are interpreted respectively as the 

angular momentum, the momentum and the energy of the system. The ope- 
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rator M 2 : = H 2 - ~ is the square of the mass. The spectra of H 

and M are nonnegative and the vacuum state is the only state on which 

M vanishes, this means we exclude zero-mass particles. Since H 

governs the time evolution the dynamics of the system is determined 

if H is known as a function (or functional) of the elementary dyna- 

mical variables. 

6. 0he-Particle States 

In the orthogonal complement of the vacuum state the mass operator 

M has a point spectrum 

O ~ m I g m 2 ~ m 5 .... , 

2m~ .t° . To each eigenvalue m i and a continuous spectrum from 

belongs to an invariant subspace ~l(i~ on which U(d,Jl) is 

an irreducible representation belonging to the mass m i and the spin 

s i • 
For the sake of simplicity we assume in the following that there 

is only one mass eigenvalue m and that the spin vanishes. A one- 

particle state I~1 e )~l can be expressed in the form 

~,, = /d'~ IF>/C~) (lO) 

where %~)&£z and I~> transforms under Poincar6 transformat- 

ions according to 

e iF> ~ l~> e ( l l )  

and 

where w :=~  {2+m2 , I ~:= A p ,  p := [p ' ,~ }  , u(~i) := U(o ,A) .  
Let A (f,t) be defined by 

{A,,, 1 
where 

and ~(~) 

(12) 

(l~) 

.,e.c~ :~ I ~"~ "'-"~" ~ct ~; ~ ' ;~ "~ -~  (15) 

is a smooth function. We assume that the matrix elements 
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~I A(f,t) I0> do not vanish. It follows from the covariance of the 

field A(x) that a constant factor can be chosen such that 

{~1 A C.~,~) Io> = ~ ~)  (1~) 

It is then possible to construct a covariant field 

functional of A(x) such that 6 

B(x) as a linear 

(17) 

7. Scattering States . The states 

(18) 

satisfy 

(19)  

as tl, t2--~t ~ • 
They have therefore strong limits 

The states ~(~) are the scattering states and the S 

(20)  

m a t r i x  i s  

The vector 

sor product 

(t) defined by (18) is a linear functional of the ten- 

@li ' i.e. 

~10 =--- ~{'~,) ® ~d (22) 
I .-4 

If we define the operator Hf by 

I-'4 i ~ l  i ~ l  
(23) 

it follows from 

(24)  

that the time dependence of ~(t) is given by 
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[l~,) = e ) (2.5) 

Let 

~;. := @ ,6 , ~:) (26) 
l;r.- I 

and 

The vectors B(f,O) .... ~0~ define the operator ~ from ~f into 

and the scattering states ~(±) are 

: 9_ t % (28) 

with ~}~f and the operators ~ ± , 

~+ := 5-1~m Z ~ ~ (29) 
~±~ 

are generalized wave operators 7. The assumption of asymptotic comple- 

teness can be stated in the form 

It follows that the S operator, 

(3o) 

is a unitary operator in ~f . 

Let Gfi be the generators of the irreducible representation of 

the Poincar6 group On ~fi belonging to the mass m and spin zero. 

The generators of the Poincar6 transformations of ~f are given by 

The Poincar~ invariance of the scattering states is expressed by the 

intertwining relations 

~n. = n.e~ (33) 

The invariance of the S operator 
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[G~,s]  = o  (3~) 

is a consequence. The proof of the existence and invariance of the 

scattering states 3'8 depends critically on the assumed properties 

of the local field A(x) . Note that our construction of the operator 

involves an integral over the hypersurface t=0 in the definition 

B(f,O) . Thus ~ is invariant under translations and rotations 

but not under Lorentz boosts; 

,,9 We have thus an "instant-£orm dynamics. Had we integrated over an 

invariant hyperboloid or the hyperplane x 3 + t=0 we would have 

obtained a "point form" or a "front form". 

If we have Poincar~ generators in ~ for a noninteracting system 

and add interaction terms to the Hamiltonian then, according to (9), 

either K or ~ , or both, must also be interaction dependent, In 

canonical field theories the Poincar~ generators are expressed as 

integrals over the energy-momentum tensor T P~ (x) 

H -- I d~ T°°C~) (37) 

• a = Id~ T°ec~) (38) 

1~ = j'##~. ~'. T°°c~.) (39) 

a, : g , , . .  [a , .  - . -  
nll~l 

This construction solves the problem of finding compatible interac~- 

ion dependences for H and ~ . The commutation relations (g)-(9) 

are satisfied if and only if the energy density T°°(~) satisfies 

the local Schwinger l0 commutation relations 

iT%Co,  T°°e'~'J'I -- ~ { T°'¢~).'a,¢ ~'Cg-~'J - 

- T °" ~ , ) .  ~" ~'c~-~')} ~- o. (~ ,~ , )  
(~i) 
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where the function ~ (~,~l) 

and satisfy the relations, 

[ds~. ~(~.~ ' )  = o  

J~s~.~ ~ , g , )  = o 

must be antisymmetric, ~r(~,~') = _ ~(~) 

(@2) 

The condition ~ =0 is sufficient but not necessary. Clearly the 

locality features of the field theory are essential for the relativis- 

ticinvariance in this construction. Particle creation and the necessity 

for infinitely many degrees of freedom are thus intimately connected 

with the relativistic invariance. 

The question remains whether a satisfactory Poincar6 representation 

can be constructed if the elementary dynamical variables are the cano- 

nical coordinates, momenta and spins of a finite number of particles. 

In the absence of the locality features of field theories, it seems 

reasonable to impose the following cluster separability requirement 2. 

Zet a denote a partition of the N-particle system into disjoint 

clusters a i , i=l ... n a . The states of the cluster a i are vectors 

in a Hilbert space ~ai " The Hilbert space 7~ is the N fold tensor 

product of one-particle spaces and hence 

for every partition a . Let Uai(d,•) be a unitary Poincar@ repre- 

sentation for the cluster a i . We will also use the notation Uai(d,~k) 

for the operator Uai(d,•) @ 1 acting on the tensor-product space 

($3). The representation Ua(d,A) describingthe noninteracting 

clusters of the partition a is then given by 

(dA) = A) 

Equation (z~) implies the relation 

nA 

for the generators. The operator Ta(~) ,~ = d I , d 2 ,..., dna , 

% c ~ ) : = "~ "U~ (d,, 4) (~6) 

translates the clusters of the partition relative to each other. The 

cluster separability requirement for the representation U(d,A) of 
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the complete system is then 

s-lim (U ('d,A) -'I.)'j. (d,A)) T= (~) = 0 (~?) 

Several functions of the generators will play an essential role 

in the further development. The covariant spin vector W~ is defined 

by 

W,~. ~ (~8) 

It follows that 

~e 4e .=@ 

w " =  "r.~- , "w- _- H~' + -~ , ,E  (~-9) 

The Newton-Wigner position operator ll can be defined as a function of 

the generators by 
-e 

X : = % (50)  
M ~ (~+~) 

I t  f o l l o w s  from t h i s  d e f i n i t i o n  and the commutat ion r e l a t i o n s  ( ~ ) - ( 9 )  
.=~ 

that X and ~ satisfy canonical commutation rules, 

[z,..%] = 0 , I~z, .'~] -- ~ r~  (51)  

and that they commute with the canonical spin ~ defined by 

:= J- Xx~ (52) 

The canonical spin ~ is related to the covariant spin vector W~ by 

a Lorentz transformation 

where ~ := ~/M and L (~ )  i s  the  i n v e r s e  boos t  d e f i n e d  by 

(53) 

LI~J{ ~., l{~ ] = (o ,o ,o .~)  

From Eq. (53)  i t  f o l l o w s  t h a t  
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Conversely the generators can be expressed as functions of the oper- 

ators M,~,~ and ~ defined to satisfy the commutation relations 

(51) and 

[~', .] = [f,.] = [@,~] =0 (56) 

...# 

m~ 

[g, ~'1 =[~',~1 = 0 (58) 

We then have the expressions 

H = ~  (59) 

.~,. 3,, ~ .,- ~ (6o) 

and 

~1 ~,H~".I- .~I ' I}  - (~, . :~ ' ) (Pt4-t - I )  "4 (61) 

for the generators which we write schematically as 

= G~ (.,,~ ,~, ~) (62) 

In an instant-form dynamics the operators P and ~ are the same 

for interacting and noninteracting particles. The generators for 

the noninteracting system are 

% = ~= (%,~o, ~, ~) (63) 

The Bakamjian-Thomas 12 construction for interacting particles is then 

%.,.- G, (,o., v., ,~o, ~, ~) (64) 

where v commutes with ~ , ~ and T o . 
Similar constructions are possible in point-form and front-form 
a c 13 dyn mi s . We may scale X and ~ by M and define 

It follows from (54)-(61) that 
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M- ~ , ~' = .~. ( 6 6 )  

and 

(68) 

since ~ can be expressed as a function of J,K 

(66)-(68) schematically as 

and Q we can write 

= ~ c~,~, ~,~,) 

and the Bakamjian-Thomas construction is I%'15 

(69) 

~ -- ~, (Mo+~, ~o,~,~) (7o) 

where v commutes with J,K and o ' and J,K are the same for the 

interacting and the noninteraoting system. 

For the front form we need to identify the generators that leave 

the null planes ~.{+t = const, invariant. They are ~.~, ~.~ and 

~.,...= ~.,..,.,.,e , ~.,..-= ~ -  ~. c ~ . ~ )  (71) 

(72) 

where 

(73) 

In the front form the interaction dependent generators are 

and 

The front-form Bakamjian-Thomas construction is schematically 13 

where v commutes with P+, P~ 

a spin vector that satisfies 
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~"- = ~ (76) 
(I 

In formulating the scattering theory we concentrate again on the 

instant form. T.et a be a partition of the particles into n a distinct 

clusters such that for each cluster a i the mass operator Mai has 

at least one point eigenvalue. The corresponding eigenvectors ~i,~,~ 

define a channel ~ . They satisfy 

M,,~ I,(; .F, I"> -- I,~;, F. I0 ~,~ (77) 

(?8) 

(79) 

we define 

and 

The tensor product of these eigenfunctions defines the operator ~ 

from ~f~ into ~ . With 

= o ~-F'~ (82) 

~w~ =o for w~ (83) 

:= ~ ~ (8~) 

This injection operator ~ has the same symmetry properties (35). (36) 

as before. Existence of the wave operators 

and transform under Lorentz transformations according to 

^ _ SA~ 

"U.; (^)l,,.f,~> = ~ l~.,r, ~'> ~ [ ~ (^,~)] 4~--~'* (80) 

where D s is the 2s+l dimensional irreducible representation of 

the Wigner rotation defined as the product of three Lorentz transfor- 

mations 
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16 does not guarantee their Lorentz invariance . 

In order to discuss the existence and invariance of the wave operat- 

ors it is useful to note the tensor product structure 

= ~C'(~,a'~) o ~ (86) 

and 

Any vector 

such that 

%e~' is represented by a vector valued function #(~)Q~ 

U'~I" = ]a'_P. I1~ (~)11: (88) 

Anytranslationally invariant operator (.9" has the representation 

(89) 

where ~(~) operates on ~ . For the injection operator ~ we have 

where ~ (~) 

(~I~I"~. F) = °c(~-~) ~(?) (90) 

maps ~f into ~ . It follows that if ~is defined by 

7)':= H~ -~H~ (91) 

then 

We are now in a position to state sufficent conditions for the existence 

o f  t h e  w a v e  o p e r a t o r s  . f l . +  . 

Theorem I 17. If for every momentum P there is a dense set 

D cD(~f) such that for # @ D 

e ~ iHft ~ is strongly continuous in t and 



82 

then 

exists. 

From theorem 1 it follows that for any % ~ ~f there is some 

constant C independent of t and ~ such that 

,~ ~c~ ,,~" (~ _ (~)}~c~)l l~ cK~(~,ll • 

It follows therefore from the dominated convergence theorem 18 that 

~ 

and hence 

(95) 

Theorem 2. If either H,~ or M,~ satisfy the conditions of 

theorem 1 then both ~±(H, ~ ,Hf) and ~± (M, ~ ,Mf) exist and 

they are equal. 

From the generalized Kato-Birman invariance principle 19 and theorem 

1 it follows that both A~! (~,~ ,Hf) and fA± (M,~ ,Mr) exlst and that 

they are equal, 

In the following we assume that the conditions of theorem 1 are satis- 

fied. If the injection operator ~ satisfies the condition 

@ : ~ ~( (97) 
then 

It follows that the wave operators A~+ and the 

Lorentz invariant. Conversely if ~A+(H, ~ ,Hf) 
then there exists a ~' such that 13 - 

S operator are 

is Lorentz invariant 
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_~@' = ~'~@ (99) 

The construction of interacting representations that ~ satisfy cluster 

separability proceeds inductively for an increasing number of particles. 

For two particles the Bakamjian-Thomas construction satisfies cluster 

separability and ~o~ = ~f . For three particles Mutze 20 has shown 

that the Bakamjian-Themas construction cannot satisfy cluster separa- 

bility unless all two-body interactions vanish. However, for two 

interacting particles and a noninteracting spectator it is manifestly 

possible to construct a representation G and Lorentz invariant wave 

T operators which satisfycluster separabiliSy while I % • 

The recursive construction for a fully interactive N-particle system 

proceeds along the following lines 15'21. Suppose the problem is solved 

for N'~ N then we have for all partitions a into n a clusters, 

n a > 1 , a representation G(a) of the form 

~ )  : ~ ~=~ (lOO) 

These generators s a t i s f y  by assumption the c lus ter  separab i l i t y  con- 
d i t i o n  

( Gc~))~ = &~n b) ( lOl)  

where, fo r  any operator ~ ~a is  the operator obtained from ~ by 
turning off all interactions between different clusters of a . Know- 

ing G(a) for all a is sufficient for the construction of the 

injection operator ~ and a Euclidean invariant unitary operator A(a) 

which satisfies 

and 

Ac=~ Z,~ = X, ac~) (lO2) 

(AC-))b = A (~ %) (lO3) 

The desired generators for the fully interacting N-particle system 

are then 

(lO~) 

where 
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C~: = (-4) ~(~-~) ! (lO6) 

and 

Note that 

g := C. A2 (lO7) 

From ~ we can construct an injection operator ~ satisfying 

such that 

(108) 

(110) 

It follows that 

and hence the wave operators /I± (H, ~ ,Hf) are Lorentz invariant, 

For in te res t ing  appl icat ions pa r t i c l e  creat ion is c lear ly  essent iaI ,  
but it is not required by relativistic invariance. It is worth noting 

that particle theories do net become field theories when they are 

generalized to include particle creation. The relativistic Lee mo- 

del 22'13 is not a field theory. The elementary particles are N, @ 

and V . The N@ system allows a Bakamjian-Thomas construction where 

v has matrix elements Ne@V . In many-body systems the numbers 

NN+N V and N&N V are conserved. In the recursive construction of 

the many-body representation these numbers play the same role as the 

total particle number before. 

Perhaps more interesting is an N~ system with a vertex interaction 

N~N in the mass operator. The system can be truncated to allow at 

most one pion without loosing the relativistic invariance, but st the 

expense of cluster separability. Cluster separability can be achieved 
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as the number of pion is allowed to increase indefinitely, but the 

theory does not become a field theory in that limit. 
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In this lecture I hope to show that relativistic-particle quantum 

mechanics with direct interactions is a useful tool for building models 

applicable to hadron systems at intermediate energies. To do this I 

will first describe a class of models designed to incorporate nucleon- 

nucleon interactions, pion production, absorption and scattering into 

a single dynamical framework without dressing the nucleons with pion 

clouds 1'2. The second major topic concerns electromagnetic interactions. 

In the first lecture (referred to as I in the following) I specifically 

exclUded long-range forces and zero-mass particles. Since many of the 

experimental data in hadron physics involve electromagnetic interactions 

this limitation is a major defect which must be addressed. 

The elementary particles of the NN~ model are the nucleon, the 

isobar and the pion. Let -~N ' ~ and 7~z be the Hilbert spaces 

of the corresponding one-particle states. The Hilbert space of states 

under consideration is then 

(1) 

The interactions are such that the ~ decays into a pion and a nucleon. 

The physical particles are the nucleons, the pion and the deuteron. 

The space is therefore 

+ This work was performed under the auspices of the U.S. Dep. of 
Energy under contract W-31-109-ENG-38. 
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The generators G O and Gf are defined on these spaces in the obvious 

manner. Following the general scheme of I we first construct GNN,~ 

and GN~,N for the partitions (NN)~ and (N~)N . Next we need 

% mass operators N~ and MN~,N which commute with X ° and are 

scattering equivalent to MNN ~ and MN~,N . 

Let ~a and ~b be the momenta of the two nucleons. States in 

~NN := 7~Ne 7~ N are represented by functions ~(~a,~b ) , or equi- 
valently by functions of ~NN and ~a ' where 

and 

Spin variables will be suppressed throughout in order to simplify the 

notation. The Bakamjian-Thomas construction of MNN is straightforward, 

i.e. 

• l , . )  (5 )  

where MNN is independent of ~NN ' 

(6) 

The wave operator ~ NN_+ for nucleon-nucleon scattering is 

(7) 

A 
The wave m a t r i x  ~ NN + can be o b t a i n e d  f rom V~T~T by s o l v i n g  L i p -  a 

pmann-Schwinger equation. In the presence of a pion spectator we have 

The generators are then additive, 

(9) 
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(ll) 

and the wave operators remain unchanged, 

where 

Instead of representing states by functions of ka,PNN and ~ , 
~a ~ we may choose as independent variables ,P and ~ , where ~ 

is defined by 

% = L (~ /~ . )  '1,. (I~) 

"~ is represented by i~7 The virtue of this choice is that X o 

and that MNN,~ defined by 

~.~ ~= c ~ + ~ L  )'~ ~ ¢ ~ D  '~ (l~) 

where 

" '  " - = • ~..I;.] (17) (~. i3.e.DH..i.~,,j~&) S(~,-~',,) ~(f'-~).C.~.l" "' 

commutes with ~ . o 
The operators MNN ~ and MNN,~ are defined by stipulating that 

they vanish on ~NN and on ~NA ;= 7~N@ ~ . It follows from (16) 

and (17) that 

D-N.,. +_ = ~-..+- (18) 

and 

Since ~ " - -  ~'I follows from ~" = ~. and ~ ' ~ - - % ~  i f  an~ 
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only if 1~71 = I~a l  , we have 

s,,, - a~*. , . .o. , , , . .  ~. J,,+ .~,, , .  (~o) 

and the unitary operator A(NN,1% ), 

transforms MNN,~ into MNN,~ , 

-I 
~..,. = AI..,~).M..,~.A(g~,@ 

For the cluster consisting of nucleon a 

State vectors in ~NO~a O ~N @ ~ -.are -,represented by 5"component 

functions ~N(~a) , ~a(P~) , ~N, (Pa~ ,k ) . The operator M a 
is given by the block matrix 

[: o m N 

(22) 

and the pion we define 

(25) 

(24) 

o 7 
(25) 

(26) 

(27) 

(28) 

where 

w¢~) ~ c.,i;~÷~-)% (.:t,.,~,~) ~ 

If we add a spectator nucleon b the Hilbert space is 

Ga~ is defined in the obvious manner and 

It follows that 
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~ and q~b ' defined by As an operator on functions El , 

(29) 

~.,, = L (~/~o) l~.w (3o) 

~o is again i ~Tp . The mass operator M'ax,b defined by 

(31) 

-qp 

commutes with X o if 

(32) 

where ~a~ is the block matrix (25). The representations %~ ,b 

and Ga~,b are scattering equivalent. 

The complete mass operator M is then 

(33) 

where V o is a two-body interaction in ~NN @ ~Nb and vanishes in 

~NN~ ' and V # is a three-body interaction in ~NN~ with transit- 

ion matrix elements to ~NN " Betz and Lee 2 have fitted the parameters 

of a model of this type to pion-nucleon scattering and to both elastic 

and inelastic nucleon-nucleon scattering. The application to pion- 

deuteron scattering produced reasonable results. 

We now come to the problem of electromagnetic interactions. What 

can be done to combine the quantum electrodynamics of photons and 

electrons with a direct-interaction hadron model? Is it possible to 

add to the Hamiltonian the standard interaction of the form 

where Jh(X) is a hadron current density? The following lemma should 

be useful. 

Lemma: Assume that J,P,H,K satisfy the Poincar~ commutation relat- 

ions and define 

M' .'-JdJ~ ~e~> (35) 
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.@ -@ 

where ~(0) commutes with J and K , 

and 

[~,,,lco)] = [R:? (o~]  = o 

(36) 

(37) 

and from (35)' (36), (37) and (38) we have 

and 

w. 

and hence 

From (38) and (1.9) it follows that 

[~:~,H'] ,,-[k:~',H1 = o 

Thus Eq. (39) is necessary and sufficient for 

[ ~ ' ,  H+'A ' ]  = ~ 

(~1) 

(#2) 

(44) 

(¢6) 

t~,H'] tr,H'l= 0 

c~) - e -~ ~to) • e (38) 

Then the generators ~,~,H+H t, ~+~' satisfy the commutation relations 

(1.3)-(I.9) provided ~t commutes with H s and the components of ~s 

commute with each other, 

(~-o) 
" 

From (35), (37) and (38) i t  follows tha t  
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to hold. From (~) it follows that 

(47) 

Thus Eq. (40) is necessary and sufficient for 

(48) 

= 0 , is suf- to hold. Obviously local commutativity, [~C~), ~ C~')] 

ficient for C39) and (40). 

For practical purposes the conditions C39) and C40) can be ignored 

for the large number of applications where H t is a perturbation and 

the first order is sufficient. An example is high-energy electron- 

nucleus scattering in the one-photon exchange approximation. 

Let Gem and G h be respectively the Poincar& generators of quantum 

electrodynamics (electrons, positrons and photons) and for a system 

of hadrons with direct interactions. Then the operator ~ C~) , 

is a hadron current density satisfying satisfies (57) if j~(~) 

v$(,',) : ^ %  i"ro) 
is the Maxwell field, 

V~,,,, (^). A"Io)-U,-~ (^1 = A',,. . A" ( O) 

(5o) 

Cs1) 

and A,C~) 

No general prescription is known for the construction of the current 

density for directly interacting hadrons. Approximate solutions can 

be attained by formal expansion in inverse powers of the velocity of 

light 3'4. Classical theory suggests that the construction of a covar- 

iant conserved current maybe related to particle position operators 

satisfying the world-line conditions. Canonical coordinates cannot 

satisfy the world-line conditions exactly 5 but they can be satisfied 

approximately 6 in a formal expansion in inverse powers of the velocity 

of light to order 1/c 2 . The approximate construction of covariant 

conserved currents and the approximate world-line conditions are indeed 

closely related in that appr0ximationbut the approximations do not 

seem to point to an exact relation. 

A word of caution is in order concerning expansions in powers of 
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1/c 2 . The velocity of light is a convenient rage, but its power does 

not by itself measure the size of terms in the expansion. The relevant 

physical quantities are the velocities of the particles. In a classical 

theory the expansion is justified if the velocities of all particles 

are small compared to the velocity of light everywhere on each orbit. 

In a quantum mechanical theory ~he expansion is in powers of the un- 

bounded operator ~ /(mc) 2 (c=l) . An expansion of (~2+m2)~2 in 
~2/m2 powers of p must be justified by restrictions on acceptable sta- 

tes ~. The error of a nonrelativistic approximation 

I 1 ( ~  ÷~ J - - ~ - ~ ) ~ i  (52) 

may be acceptably small. The errors of successive improvements 

II ( c . ~ " - . ~  - ~ * ~ ~--Z~ ) ,  II 

and 

II((,,,'-.,-,pP" -, ~"- , 4 ,P' ~'  

may or may not be successively smaller. Momentum-space wavefunctions 

typically decrease as some power of the momentum for large p . Bepend- 

ing on the nonrelativistic approximation may be quite adequate, but 

the improved versions are much worse. Or perhaps the first relativistic 

correction is still an improvement. The moral of this story is simple: 

Quit while your are ahead! Don "t press ~our luck! Also it may be 

legitimate to expand in powers of some momenta and not others. In the 

applications of the NN~ model discussed earlier the pion velocities 

are usually relativistic~ baryon velocities are usually but not always 

nonrelativistic. 

Expansion in powers of 1/c 2 have been widely used for the purpose 

of constructing compatible interaction terms for ~ and H without 

recourse to the Bakamjian-Thomas construction. The procedure has yield- 

ed satisfactory results to order 1/c 2 . In that approximation cluster 

separability, the world line conditions and a reasonable relation to 

conventional field theories are all closely related. 
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i. N-Bod[ Relativistic S~stems 

In Predictive Mechanics, the basic equations of motion form a true 

differential system l) . 

J~f = ~ ~v.r ~ (~, ~,,..., ~L] (1.1) 

where the generalized accelerations -~ are submitted to the Predicti- 

vity condition. 

( 

Phase space is the bundle (T(M~)) N equipped with the natural coor- 

dinates ~r..x~;~rd,...~w . Whenever no confusion is possible we drop the 

greek indices ~= 0,1,2,5 signature + --- 

a,b = i, .... , N . 

No summation over repeated particle indices, except if explicitly spe- 

cified. Condition (1.2) is stronger than the simple Frobenius integrs- 

bility condition, since it insures individuality: the solutions have 

the form 

which allows for world-lines. In the first presentation of this forma- 

lism, we assumed additionally 

~-'Vk = 0 (1.~) 
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which implies that each ~ is constant in the motion. 

is then identified with the squared mass m~ and each 

tional to the proper time, viz. 

This constant 

a is propor- 

The framework can be generalized provided the constancy of masses is 

recovered somewhere, which is the case for hamiltonian systems. Ac- 

cordingly eq. (1.g) can be regarded as subsidiary. When (1.$) is drop- 

ped the parameters -C a are no longer affine parameters: (1.5) is no 

longer valid 2) . 

The dynamical system described by eq. (1.1) is equivalent to a 

(loca~ N-parameter abelian group gN acting in (T(M~)) N . This group 

of multi'time translations has the infinitesimal generators 

+ =g 9 (1.6) 

(Geometrically each X a defines a vector field). 

The predictivity condition (1.2) simply reads 

[Z L] = o (17) 

and the orbits of gN are N dimensional surfaces, they provide a 

foliation of phase space. The projection of each orbit on (M~) N 

yields the cartesian product of N world-lines (i.e. a world-surface). 

When (1.4) holds, fixing the positive value of m~ selects a 7N di- 

mensional submanifold which is invariant by gN " 

Suppose we are given a multitime dynamical system, satisfying both 

(1.2) and (1.g). In order to have a hamiltonian formalism we should 

look for a symplectic form invariant by gN " 

Since a famous theorem 3) forbids to require that the positions 

Xl,...,x N be canonical variables, the matter is ambiguous and addi- 

tional prescriptions are needed for the hamiltonization. It happens 

that the inverse procedure is more easy to carry out. Thus constructi- 

ve and practical motivations lead to consider a priori a hamiltonian 

system in an abstract phase space where a set of canonical coordinates 

are ql''''' qN ' Pl''''' PN " 
Multitime Hamilton equations of motion can be written, but they are 

eventually identified with eq. (1.1) and finally a dynamical system 

is recovered in terms of the natural coordinates Xl,... , XN, Vl,..,v N- 

The key of this identification is the transformation q,p, ~ ~ x,v 
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from canonical to natural coordinates. Of course, the procedure is 

not mathematically unique, and physically reasonable prescriptions 

are invoked in order to select a dynamical system. 

In this a priori hamiltonian approach 4) " one starts from N covari- 

ant hamiltonians H 1 .... H N which are functionally independent and 

strongly commute among themselves 

H~, H~} = 0 (1.8) 

2 
The free hsmiltonians are ~ = ~2 Pa . When interaction is Example: 

present we have H a = H a + V a where V a are pseudo-potential terms 

chosen as to satisfy condition (1.8). Naturally qa transform as 

points in Minkowski space MS , whereas the Pa transform as four 

vectors. Standard Poisson brackets are assumed 

and the Poincar~ algebra is generated by P = Pl + .... PN and M = 

ql ^ Pl + "'" qN ̂ pN " The hamiltonians are not directly related 

with the energy but rather with the masses. They generate the Liouville 

operators (or equivalently vector fields) X a through the definition 

From (1.9) it is obvious that these Liouville operators satisfy (1.7). 
Thus they generate an abelian group. The orbits of this group are just 

the N dimensional integral surfaces defined by the Hamilton-like 

equations of motion 

Note that, in general, solving eq. (i0) yields each qa as a function 

of all the parameters r b 5) . 

No world-lines have appeared so far. But now, if we find the quantities 

Xl,... , x N (non degenerate and transforming like the ql''''' qN ) 

satisfying 

: o , ( 1 , 1 1 )  

then, an appropriate change of variables permit to identify X a of 

(19.) with the X a of eq. (1.6), end eq. (1.10) is finally equiva- 
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lent to (1.1). Since (1.7) is satisfied by construction~ the solutions 

certainly have the form (1.5)(world lines). 

Hint of the proof: 

Define 

and compute 9_~_~ from (I.i0) taking (I.Ii) into account. 
9rb 

Important remarks 

a) Practically H a are given functions of the canonical variables 

and the position equations (I.ii) have to be solved with respect to 

the unknown functions Xa(ql,..,qN, pl,..,pN) . 

b) Whereas (1.7) is satisfied by construction, in contrast eq. (1.4) 

is generally not valid for ~ and ,r obtained from (1.12) (1.15). 

c) Eq. (I.ii) admit infinitely many solutions. Playing with this 

arbitrariness permits, in principle, that we choose the positions x 

with enough care in order to satisfy (1.4) 9 if we really wish to do 

it. Nevertheless, for a pragmatic reason of simplicity, we prefer to 

drop the condition (1.4) . 

This enlargement of the formalism allows for evolution parameters which 

are generally distinct from the proper times. But we gain simplicity 

in the construction of models and especially in the solving of eq. 

(l.n) . 

Fortunately the hamiltonians H a provide N constants of the__ om°ti°n" 

It remains possible to identify their numerical values with %m~ and 

this fixes the reparametrization of the world-lines: 

- \~--!~ (i.i4) VT , 

where ~=~/n~ 

Naturally, we accept only the solutions in which ~z never vanish. 

d) We insist: in the a priori hamiltonian approach the model has 

no physical meaning unless a solution of (1.11) is specified. 

A unique solution to the position equations can be selected by 

requiring that all the Xa-qa vanish on some suitable Cauchy surface 

(~.) of dimension 7N+I . Of course ()'~) must not be characteris- 

tic (never invariant under the transformations generated by any set 

of N-1 vector fields taken among the X a ) • 
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Besides, (~) shall be invariant under the Poincar~ group and parti- 

cle permutations (this insures that solving (1.11) preserves these 

symmetries). 

For instance, we have suggested 6) to define (~) by 

"P. [%- --- o (l.15) 

Some arguments from Mutze theorem 7) and constraint relativistic 

dynamics are against the use of center of mass variables, in view of 

cluster separability. Hence, for N ~2 , the above choice is subject 

to controversy and might be replaced if necessary. Anyway, previous 

to the choice of (~-~) , the general N-body case faces the algebraic 

difficulty of constructing explicitly admissible interactions which 

satisfy the commutativity condition (1.8) 8) . As pointed out by F. 

Rohrlich 9) , H. Sazdjian lO) and I.T. Todorov ll) , the very impor- 

tant requirement of separability makes this matter more complicated. 

Moreover, discussing the asymptotic behavior of the potentials in 

terms of the canonical variables qa - qb can be misleading in so 

far as the exact relationship between the q and the positions is 

not exhibited. 

However, substantial progress have been made in the constraint forma- 

lism. Their possible adaptation to the present formalism could deserve 

some interest. But the questions specific of the general case N ~2 

will not be discussed in details here. 

From now on, we shall consider the simple case of two-body systems. 

2. Two Body Systems 

Each motion of the system is represented by a two-dimensional orbit 

in phase space. Its projection onto M~ x M~ is a world-surface i.e. 

the cartesian product of two world-lines. This world-surface is the 

intrinsic history of the system. But any observer will slice space- 

time by a sequence of parallel hyperplanes. The slicing of the world- 

lines implies that this observer picks up, from the world-surface, a 

one-parameter sequence of couples x I , x 2 . This sequence of x I , 

x 2 is the equal-time history associated with this observer. Its 

lift in phase space is a curve drawn on the orbit. 

We could consider an arbitrary observer, independent with respect 

to the system. This point of view would introduce a constant time- 

like direction U ~ and the equal-time surface of the observer, by 

the equation 
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1(. ('x4-~,.) = 0 

In principle it is possible to construct the single-parameter descrip- 

tion associated with any such observer, and this should be explicitly 

carried out in order to make contact with the work of other authors. 

We have preferred to give the single-parameter description associa- 

ted with an observer attached to the center-of-mass 2) . In this equal- 

time description the slicing of space-time selects couples x I , x 2 

satisfying 

" 9 - ( ~ - X , )  = 0 (2.1) 

Since we have required that x I , x 2 and ql ' q2 respectively coin- 

cide on the surface 

(Z )  = o (2.2) 

this Cauchy surface turns out to be also the equal-time surface, Let 

us define ~ = ql - q2 , ~=~4 -~ " By integrating the equations of 

motion we obtain P-~ in terms of the evolution parameters ~4, ~z 

The points of (~) satisfy a relation of the form 

"P. ~ (c4,=~) = 0 (2.3) 

Defining ~ = ~+~ we put eq. (2.3) in the equivalent form 

where $4 4~m ~ , which preserves the democracy of particles. Then, 

provided we solve the equations of motion (which yields the evolution 

of ql and q2 ) a parametric representation of the world-lines (co- 

rresponding to the equal-time description) is given by 

without solving the position equations 12) . 

Though neither ~4 , nor Xz leaves (~) invariant, a suitable 

combination ~/ of them does: Y(~-~) vanishes.For instance in the 

case of a central-like potential we have 
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7' - ~ X + ~ [ ,  ( 2 . 6 )  

Note that the coefficients of this combination have obviously something 

to do with the fixations of constraint relativistic dynamics. The vec- 

tor field Y is tangent to the lift of the equal-time history. In the 

above example 

~o = const. 

As proved in details by several authors 13) the singular lagrangian 

approach l~) can be incorporated into this framework. The relation 

with constraint dynamics has been analyzed and clarified by L. Lusan- 
na 15) . 

3. Solving Position Equations: Cauch~ Surface Versus Asymptotic 

Conditions 

We decided 2) to select the positions obtained from eq. (1.11) 

by the vanishing of w~- ql and ~ - q2 on (~) This boundary 

Condition is natural and leads to abundant simplifications. It permits 

the contact with non-relativistic mechanics through a description in 

the center-of-mass frame and seems to be the best choice insofar as 

confinement is concerned. (This was our initial motivation). 

Alternatively, an asymptotic condition looks reasonable as Well 

in a different context. As soon as it was recognized that the posit- 

ions cannot be canonical, R.N. Hill and E.H. Kerner suggested to fix 

their relationship with canonical variables by the requirement that 

they become asymptotically canonical, when the spatial separation 

between particles goes to infinity 16) . In the same spirit, the ha- 
l7) miltonization procedure used by L. Bel and his co-workers rests 

on asymptotic conditions. 

When scattering particles are considered, then asymptotic condit- 

ions seem to be more appropriate than the boundary condition on a 

Cauchy surface. 

Since distinct solutions of (1.11) lead to inequivalent dynamics, 

it may be questioned whether the system obtained from equal-time con- 

ditions on (~-) has an admissible asymptotic behavior. In particular, 

P~ and M~ should coincide with the free-particle form for infi- 

nite spatial separations 18) . Reminding that the true natural (not 
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canonical!) momenta are not ~'4, ~0"~., but rather 

with d=a/d ~a given by (1.14) it is crucial to check if: For any 

"good behaving" potentials 

× 1 " w , +  ~ L ^ ' W L -  , ~ (3 .1 )  

when 
l 'l --- ® 

Suitable asymptotic conditions would have implicitly incorporated (3.1). 

In contrast, as we start from Cauchy conditions on (~), there 

is absolutely no evidence that (3.1) is satisfied. 

In fact, both choices have their limitations: asymptotic conditions 

do not provide easily existence theorems. Moreover, they require that 

the interaction is fastly enough decreasing at (spatial) infinity and 

do not apply to the harmonic oscillator. Therefore we do not abandon 

the principle of equal-time conditions, specified on (~) . But we 

face the problem of checking that the resulting dynamics is not patho- 

logic at infinity. 

It is not proved but perhaps reasonable to expect that for a suit- 

able class of potentials, the dynamics obtained from 

(3.2) 

does satisfy (3.1). 

The best way to conclude would be explicitly solving the position 

equations (1.11) . Wepresent recent investigations about this problem. 

For the present time, we shall not discuss the validity of conjecture 

(3.1) but simply whether it is true that 

l~-I~) ~ 0 , ( ~ - ~  ~ 0 (3.3) 

for  I Wtl  = 

Let us consider an unipotential two-body system 19) (V 1 = V2 = V) 

and assume a central-like interaction of the form 



"V"= T C~) (~.~) 

Since the relative canonical variables ~, ~ remain in a constant 

p l a n e ,  we t r y  a s o l u t i o n  o f  t h e  f o r m  

~I',. ~ 

This method was used first in the harmonic case, but now we do not 

restrict the dependence of ~A . ~ in their arguments. The position 

equations become a partial differential System in the unknown funct- 

ions ~, ~ • 

Practically it is enough to find, for instance, ~ , ~ . Particle 

exchange in the formulae will provide the expressions for ~L, ~ • 

The equations for ~ , ~ involve only the Liouville operator ~ . 

We set 

hence we compute 

Let us provisionally drop the indice 1 in ~0~,~, @ and deter- 

mine ~ according to (3.6). 

Apply ~ to (3.6), develop the result on the linearly independent 

vectors ~, ~ . Defining F m as ~W~[~ we obtain the system 

(3.9) 

with the inibisl condition: ~ and ~ vanish for 9= 0 . Note that 

= 0 is nothing but the equation which defines (~) . In (3.8) 

(3.9) F ~ depends only on ~L . In order to render the system more 

explicit, we must compute ~ and ~ in terms of the derivatives 

of ~ and 

Fortunately @ satisfies (3.7) and X~ z depends only on ~z and 

two constants of the motion, viz. 



134. 

which is non-negative since E and are spacelike, and 

(5.1o) 

(3.11) 

which is certainly negative if V vanishes anywhere (including ~ ). 

Indeed we have 

~ + ' . . . -  _ + ~'.~ (3.12) 

~ N  

and m.~ can be expressed in terms of ~z, 2z, N by elimination 

of ~ . (Doing this we consider ~z and N as phase space funct- 

ions. They are not given numerical values). 

Let us introduce the variable 

From (5.12) we derive 

= z 
(3.13) 

with ~ = sign of ~.~ 

From now on we may require that ~ and "4. depend only on 

B,N,  ~z,N 
Since ~ and N are constants of the motion, only ~B and X~ give 

a contribution to ~ and ~ . We have F ~ = - dF/d~ . From 

(3.4) and (5.15) we see that only @ , ~ , N , ~z appear explicit- 

ly in (3.8) (3.9). Variables other than these ones can be ignored, 

and ~L and N behave practically like constants in this problem. 

The system (3.8) (3.9) takes immediately the normal form in ~ , thus 

a certain solution exists which vanishes for @ = 0 . By unicity we 

know that it is the one we look for. 

Now the point is whether, for a certain class of F , this local 

solution can be extended to arbitrarily large values of ~ and va- 

nishes again for ~--~ . If this is true, symmetry under particle 

exchange provides a similar behavior of ~t , ~L - Then the posit- 

ions determined by (1.11) satisfy 

"~4--~'4 "--'-'P ~:) I "~ = -  ~p... -----"," d9 
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for ~--, ~ . As a result ~-~ ~ and, in phase space, the asymp- 

totic region ~ = ~ can be identified with (at least a part of) spat- 

ial infinity ( ~t= ~ ) . Now the vanishing of the potential for 

~--~ could be interpreted a posteriori as a true separability 

property and (3.3) would be satisfied. Finally in order to check if 

the above situation may really occur, we should investigate the asymp- 

totic behavior (in ~ ) of the solution which vanishes at e = 0 , for 

the system (3.8) (3.9). This task has not been achieved yet. 0nly a 

formal expansion in powers of e has been obtained so far 20) . Its 

coefficients vanish for ~-~ , provided F is analytic and vanish- 

ing at ~ = ~ . 

Alternative methods exist for solving position equation. As obser- 

ved by Iranzo, Llosa, Marques, Molina, these equations can be solved 

whenever the canonical equations of motion can be explicitly integra- 

ted 21) . Applying their argument to the case of a potential which 

vanish for ~ R = const. (F is not analytic~ but has compact sup- 

port) we see easily that Xl = ql and x2 = q2 are the solutions in 

a region ~> A(R ) , p~ ~ a(R ) (x I and x 2 are unknown but dif- 

ferent in the region where interaction takes place). Recently L. Lusa- 

nna has given a tractable exponential formula 22) . 

Let us point out that this formula applies with @ 1 and ~2 as 

we defined, not only in the harmonic case, but for all central potent- 

ials: the quantities 3~&9~ are the same. 
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Introduction 

We undertake to formulate the second quan~ization of relativistic 

dynamics along the lines of action-at-a-distance theory. 

It can be objected that the relativistic theory of direct inter- 

actions is not yet sufficiently mature to permit such an attempt. 

But the question of particle creation is often raised a priori 

against the idea of N-body relativistic dynamics. 

For this reason, at least, it is essential to investigate whether 

N-body dynamics can be naturally continued by a more general theory 

which accounts for particle creation (or anihilation). 

We are aware of the mathematical difficulties that this program 

may involve in its developments. But it is already important to see 

how a consistent picture is at least conceptually possible. 

Crudely speaking the way we suggest consist in quantum field theory 

without fields and, in general, without locality. We stress the fact 

that second quantization can be conceived independently from the (tech- 

nical) concept of local field operators, in a Fock space scheme which 

incorporates N-body dynamics (with arbitrary N ) as an intermediate 

step. 

This view departs manifestly from the conventional habits of Q.F.T. 

But it is in agreement with the old ideas of Heisenberg l) about the 

possibility of a description directly in terms of the scattering oper- 

ator without explicit mention of the field. 

In Section 1. General properties of N-body dynamics are recalled. 

In Section 2. Second quantization is considered in a scheme where 

the number of particle is still conserved. 

Although not yet realistic, the situation described therein is of 

a certain pedagogical interest, especially it countains the case of free 
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particles. 

In Section 3. We display some principles for breaking the particle 

number conservation. At this stage we have constructed no satisfactory 

example yet. We have just sketched the main lines of a forthcoming 

theory which seems to emerge naturally, irrespectively of the technical 

difficulties it may involve. 

1. N-Body Quantum Mechanics 

Relativistic quantum mechanics is based on covariant wave equations. 

In particular, in quantum predictive mechanics these wave equations 

look formally like eigenvalue equations. The hamiltonians are operators 

and their eigenvalues are supposed to be ~ of the squared masses. 

This sim~le principle permits to recover a system of N independent 

K-Gordon equations in the case of free particles. Coupling terms appear 

when interaction is present 2) . 

But a rigorous statement of this principle requires some care. 

Indeed, even for free particles the wave function cannot be in the 

Hilbert space L2(~R ~N) , whereas the standard theory of operators and 

eigenvalues is generally understood as taking place within some Hilbert 

space. 

Naturally, in the free case at least, the wave function may belongs 

to a Hilbert space: The solutions qprrespondin~ to given values of the 

masses have a well-known scalar product defined through Fourier trans- 

form on the N-uple hyperboloid which correspond to these masses. This 

structure is related with the usual probabilistic interpretation 3). 

But such a Hilbert space is of no use for our purpose: it depends on 

the masses and the hamiltonian operators act completely trivially on 

it: they reduce to the identity multiplied by the corresponding mass. 

Therefore, in so far as one is concerned with having just a mathema- 

tical framework describing operators, eigenvectors, eigenvalues and 

all that, the natural Hilbert space is L2(~N ). Fortunately the 

conventional technique of Hilbert spaces has been suitably enlarged 

and completed by the introduction of rigged Hilbert spaces. This con- 

cept introduced by Gelfand allows to circumvent the above difficulty 4). 

Though the wave function cannot be in L 2 , it is generally a tempered 

distribution . Thus the largest space in which any function we consider 

is supposed to be is well-defined and we deal with the triplet 

c L c 
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A "time" dependent formalism is possible also. In that case, the 

wave equations of the form Klein-Gordon + coupling are replaced by a 

relativistic SchrBdinger system involving N evolution parameters. 

This time dependent formalism is more general and permits to have 

a wave function in L 2 if on wishes. We have used it recently to give 

(provisionally in L 2 ) an axiomatics of scattering 5). 

But, in contradistinction with the point of view of Horwitz and 

Rohrlich 6) are , our interpretation is that wave-functions in L 2 

off the mass-shell anyway. We do not exclude them completely. Rather 

we consider that these idealized objects are conceptually useful, but 

we should manage that the true (observable) physical processes involves 

only on-shell states. 

Taking seriously the wave-equations (Klein-Gordon + coupling) as 

eigenvalue equations, we are obliged to consider the space of solut- 

ions not as isolated, but as imbedded into the larger space of ~emper- 

ed distributions ~@ . Thus the operators we consider may act in d @ 

and not only in the space of solutions. 

In other words, to be consistent with the idea that physical states 

are eigenstates (i.e. o__nn-shell states) we are lead to construct an 

off-shell framework. 

A system of N particles is defined by N commuting hamiltonians 

H l, ..... ,H N • 
This principle comes out directly by quantization of predictive 

relativistic mechanics in its many-time formalism. Commutation is in- 

timately related with predictivity conditions and the fact that the 

translations in the "time" parameters form an abelian group 7) . 

It plays an essential role in the calculations involving the evolut- 

ion operator, in particular in scattering theory. 

In order to have a consistent theory of eigenstates it is technieal- 

ly essential that the hamiltonians we consider map ~ into itself 8). 

Any operator A which maps~ into itself will be said hermitian 

in the rigged Hilbert space ~C L 2c~ $ when 

,.(,, A-~> = <A(#,-¢> 

holds ~ W and ~ 

Then, in the wave-equations 

J  2"4' 

is a Beneralized eiBenvector of H a 

(i.i) 

(1.2) 

for the eigenvalue 1 m 2 . 
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This situation is realized in particular by the Free particle hamilto- 

nians 

But interactin5 hamiltonians satisfying the above assumption do exist '. 

Example: If B is unitary and maps 4 into itself we can take: 

- %-' 

(Of course this simple construction does not garantee cluster separa- 

bility). 

In view of relationship with the time-dependent formalism we intro- 

duce N real parameters ~i' .... , ~N and the evolution operator: 

For the free hamiltonians (1.5) it is easy to check that U maps 

into itself. This property holds obviously also when (1.4) is valid. 

Whenever it will be necessary we shall assume that U is unitary in 

the rigged Hilbert space, i.e. is Unitary and maps ~ into itself. 

Details about the time-dependent formalism, time-dependent wave funct- 

ion, and the Schr~dinger equation 

9r. 

have been displayed elsewhere, with a sketch of a scattering formalism 

in L 2 . The appearance of Ul''''' ~N is natural by analogy with 

the multi-time formalism of predictive mechanics, in the a priori ha- 

miltonian approach. Accordingly the evolution parameters are not neces- 

sarily the proper times 9) . However they are required to be suffici- 

ently equivalent to the proper-times in Some asymptotic sense in order 

to allow that the asymptotic properties of the system are obtained by 

lettin~ all the Ka 5o to ± 

As this point come two remarks: 

a) The control of this assumption still requires some investigations 

even at the classical relativistic level. This problem is provision- 

nally left aside. 

b) As recently stressed by Rohrlich and Horwitz 6) , dealing with many 

parameters rises, in principle the question of the order of the limits 

in the definition of the wave operators. As we pointed out 5] this 
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problem does not appear in the single - potential ( = unipotential) 

case. The general case is solved in Ref.[6]. 

The time-dependent wave function in (1.6) correspond to the function 

of the time independent formalism through the formula: 

=q.~ (1.7) 

Hence (1.6) is more general than (1.2). Indeed (1.7) implies (1.6) 

irrespectively of the validity of (1.2). 

For brevity, the space of the solutions of (1.2) in J~is called 

the mass-shell space and denoted by jN (resp. K N 
ml,..,mN ml,..,mN ) in 

presence of interaction (resp. for free particles) I0). 

As well-known, K N is endowed with a mass depending scalar 
ml,..,m N 

product ( , ) suitable for some probabilistic interpretations and 

not to be confused with the scalar product ~.. • ~ in L2 (~N) 3). 

The scattering formalism in L 2 has been established in complete 

analogy with the traditional non-relativistic axioms, except that 

i''''' TN replace the absolute time of newtonian mechanics, but 

wave functions in L2 are somehow unphysical, as they are off the 

mass shell. Hence, having in mind realistic applications, we extend 

the formalism to ~ as follows: 

ASSUMPTION: Let~l± be the Moller wave operators, let S be the scat- 

tering operator. We require additionally that I~_~, ~-g~_ , S , S -1 map 

into itself. Then ~ and S can be continued to the whole space 

~@. For instance the extension of S is defined by : 

In particular S ~ now makes sense when ~ is on the free mass- 

shell and K N is stable by action of S . This is the main 
ml''''mN ll) 

point in view of applications to scattering processes 

Note that S is unitary in the rigged Hilbert space. 

Now assume that, in addition to the above Assumption, the system 

has no bound state. 

Consider f on the interactin~ mass-shell. We can write 

Then it can be checked that g and h are on the free mass-shell. 

The scalar product ( , ) in the free mass shell induces two scalar 
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products in jN 
ml,..,mN • 

Indeed we can define: 

.l,.)_ = 

where fl and f2 G jN 
ml,..,m N • 

These scalar products coincide when S is unitary in the sense of 

( , ) . We shall not discuss here the difficult problem of finding 

for which interacting potentials the wave-operators actually exist. 

Neither shall we display the perturbative procedure for computing the 

S operator. 

Results in these domains, as well as on the subject of cluster sepa- 

rability are available in the constraint formalism 12) . We expect that 

a large part of the results which belong to the constraint approach 

can be adapted to predictive mechanics at the price of minor modifica- 

tions. 

2. Second Quantization with Constant Number of Particles 

In the present work (essentially devoted to second quantization) 

our philosophy is to pretend that the problems relevant of N, body 

dynamics are solved and construct the picture which allows for creat- 

ion or annihilation of particles. 

According to the spirit of Action at a Distance, interaction is 

not described as mediated by afield. Consequently we stand out of 

the conventional framework of Quantum Field Theory (Q.F.T.). Intuiti- 

vely, direct interactions (although able of maintaining causality) 

are ~enerally not local as Q.F.T. is. 

What we are doing presently may perhaps be considered as a multi- 

local, or non local, generalization of Q.F.T. 13). 

(Yet it can be observed that the version of predictive Mechanics sup- 

ported by Bel and al. provides s bridge towards local classical field 

theories 14) . 

Anyway, comparison with Q.F.T. is relevant but difficult to carry 

out, since the whole formalism of Q.F.T. is based on field operators, 

whereas our picture is by no means founded on this concept. The suita- 

ble domain for such comparison seems to be axiomatic scattering theory, 

in which Q.F.T. is able of by-passing the role of the lagrangians. 

Naturally, in the absence of interactions, our dynamics certainly 

recovers locality, and our point of view will be equivalent to that 

of Q.F.T, though differently formulated. 
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In analogy with N-body mechanics we postulate that the physical 

states (on the mass-shell states) are selected as eigenvectors of sui- 

table operators. 

They form a mass-shell space imbedded in a larger space which also 

countains off-shell states. Intuitively the states we are going to 

consider are superpositions of N-body states with arbitrary N = O, 

1,2,.. ~ . They are generally off-shell. To put this matter more 

precisely, for scalar particles the regular states are assumed to be 

terminating sequences of the form: 

= (I~, , ,  1~4 , . . .  ~ ' R ,  ! : ) . . . )  ( 2 . 1 )  

with ~gC, ..., qWGf(m SN) and ~ N = 0 for N>R , R depends 

on ~ . 

Let r be the space of such sequence~Its dual is the space ~4coun- 

taining the sequences (generally infinite) of the form 

(2.2) 

where ~N6 ~(mSN) . 

Let~ be the hilbertian sum ~ L2(~$N) with usual conventions 
N=O 

for N = 0 . It turns out that ~ is a nuclear subspace of ~ and we 

have a rigged Hilbert space: 

~' c - ~ c F  ,~  (2.3) 

The most general states which will occur are elements of F ~. 

The scalar product in L2(~R ~N) induces in ~ a scalar product 

which is also noted by ~ , • without risk of confusion. 

This framework depends neither on the mass, nor on the model of 

interaction. (Assuming identical particles the masses are equal. Sym- 

metry of the wave functions will be taken into account as lately as 

possible in order to avoid complications). 

Note that ~ is mathematicall~ analogous to the Fock space of non 

relativistic quantum mechanics, but we give no direct physical meaning 

to its scalar product. 

Note also that the emergence of F is not quite new: 

Indeed Wightman's theory starts from r , and Wightman functional are 

elements of ~*. 15) 

For each such functional, this theory defines equivalence classes 

in ~ and the space of physical interest is obtained as the correspond- 
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ing factor space (Reconstruction theorem) 16). Our procedure will be 

different. 

Let us first set up a formulation in which the number of particles 

is preserved~ although the particles undergo interaction. 

Assume that we are given an infinite sequence of N-body systems, 

satisfying the requirements mentioned in the above section, including 

Poincar~ invariance (which requires that the single-particle system 

is free), If we where to look for a realistic model this would rise 

the problem of constructing N-particle interactions when the binary 

interaction is specified. This problem is completely relevant of N- 

body relativistic mechanics and first quantization. It has been in- 

vestigated by several authors but at the classical (rather than quan- 

tal) level principally 12) 

As we warned before, in this section the typically N-body questions 

are provisionally considered as solved. 

Accordingly, for each N = 1,2,...~ ~, we have the operators H N 
a N with a N = 1,2,.., N . 

They are hermitian in the rigged Hilbert space 

and commute among themselves~ etc... 

Having to distinguish N-particle states with different values of 

N , we are bound to introduce the following notations: 
N 

=~/~x considered as essentially acting in the N-particle 
spa oea~m(~ ~N) a 

m7 ~7 "~7 (no summation) (2.¢) 

Greck indices are omitted whenever it is possible. Remind that a 

depends on N and the notation should exhibit this dependence to 

avoid confusion. 

For example for a free system we have simply the operators: 

It is natural to consider that the 2 nd quantized states ~ are on the 

mass shell when 
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N for N ~l with ~N @ Jm 

Let Jm be the sp~ce formed by these states. We reserve the notat- 

ion KN m ' Km for the free particle case. In the free case the physical 

scalar product ( , ) in each KNm induces a scalar product in K m 

and the elements in K m for which ( , ) • ~ define a Hilbert 

~m which provides after symmetrization and separation of the space 

positive frequencies, nothing but the usual Hilbert space of free quan- 

tum field theory. 

In the interactin~ case defining such a scalar product in the mass 

shell Jm rests on our ability to do the job in each jN first m 
(See Section l) . 

Zet us now prove that most mass shell states can be obtained as 

generalized eigenvectors of suitable operators. 

In view of this consider h N defined by the formula 
a N 

" o ) (2.7) ~ , &  = I o , . . . ,  o, ~ , % ,  , . . .  

for N ~ 1 . 

Let 

a~,aIj . . .  ,~, - . -  (2.8) 

be a sequence of integers with the constraint: 

To this sequence we associate Ma2 a3... defined as follows: 

| M~% = ( o , . ~ 0 ¢ , ,  ~,t.'~=, .- , ~4~,~.,~,...) (2.9) 

wich means that the M are linear combinations of the h ~ namely: 

~t ~"" (2.1o) 

Owing to the assumptions made on the H N a , we see that the h and M , 

map r into itself, which allows to speak of eigenvectors in the rig- 

ged Hilbert space (2-3). 

For each N ~ 0 , J Nm can be characterized as them2generalized 
H N eigenspace common to all the a for the eigenvalue @ 

As a result, if ~ is of the form (2.6) with the additional cond- 

ition ~o = 0 which excludes the vacuum component, then ~ is an 

for any sequence of the form (2.8). eigenvector of Ms2 a3.." 
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Therefore we are lead to define the exclusive mass-shell space jr m 
as the set of ~ in (2.6) which have no vacuum component ( ~o = 0) . 

It is easy to check that Jx is the eigenspace common to all the 
m 

M . 

Obviously the h and the M altogether commute among themselves, 

each one commute with the generators of the Poincar~ algebra, with the 
N 

number of particles ~ . Moreover, the h a are transformed into one 

another by particle permutations, this property being assumed for the 
N 17) H a 

We interprete Ma2 a3.. as mass operators and h N . aN as ~enerators 

of the motion. 

Note that even in the free case, a state on the mass-shell is not 
N an eigenstate of the h a , except if it is also a pure N-particle 

state for some N . 

In contrast with the first quantization, the mass operators cannot 

be considered as generators of the motion. 

This point gets clear when the evolution operator is introduced: 
N ~N N 

for each N consider N real parameters ~ J'''~ a "''a~N and the 

N-particle evolution operat0r ' 

U~(~...~ ~) defined as in (1.5). 

We postulate that the second-quantized evolution operator 

I~C~, ~:,',z;; . . .  ~ = ,  . . .  ) 

acts according to the formula 

I~ ~ = (~o, ~ ' ~ , ,  . . . ,  u " ~ , ,  . . . )  (2.11) 

Obviously U is labelled by the infinite sequence 

T =  ~ "c, = ~ ;  -c" ' ' ' " "" =N " " " 

which belongs to the additive group 

-llP.~ .l"Rzx . . .  , x " ~ x  . . .  

and U enjoys the Abelian group property 

12"r 1"t'r' = ~ x + - r '  I,(o = I (2 .12)  
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It turns out that U is factorized 

11. ~ ~ , ~ . ~ ) t ~ ? ~ )  . - .  (2.13) 

where 

~ : a~ £ ~ :  (No summation) (2.15) 

Eq. (2.13), (2.15) involve no rigor problem because, like all the 

operators we have considered so far, they act as 

where AN acts on N-body states. 

In matrix notation they are block-diagonal. 

A complete time depending formalism is possible but will not be 

developed here. 

T.ogically the scattering properties follow from the behavior of 

UTI ~T (where ~ stands for the free particle evolution). But, owed 

to the block-diagonal form of U in (2.11) it is clear that .provided 
N the wave operators ~± exist for each N taking the lim involves 

T-~co 
no new problem and the M~ller operator of the second quantized system 

is just given by the formula: 

= ¢, ,  .q& . . )  (2.~5) 

and the scattering operator S is given by a similar formula. 

When Assumption I holds for each N , each K N is stable by S N m 
so K m is stable by action of S ll) . 

When Assumption II holds ~ N , the scalar product ( , ) in 

K m induces two mass depending scalar products ( , )~ in Jm ' 

through the mediation of in, out-states. These will coincide iff S 

(which is automatically unitary in V~ with ~ , ~ ) is also unitary in 

K m in the sense of ( , ) . 

To sum up, let us say: In so far as 

that we consider have a nice behavior, 

a theory where the number of particles 

enjoys the same nice features. 

We may note that: 

i) 
ii) 

all the N-body interactions 

their second quantization yields 

is preserved and this theory 

Our operator h , M cannot emerge in the conventional approach. 

No use is made of field operators and we get rid of the Lagran- 
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iii) We have replaced it by a hamiltonian formalism inherited from 

multitime predictive mechanics. 

In particular the constants of the motion can be characterized as 

N Besides, in a having vanishing commutators with the generators h a . 

time depending scheme, a new state vector IT> depending on T can 

be introduced. It satisfies infinitely many Schr~dinger-like equations: 

'~,~-c... IT> : .; . ~  IT> 

The special case of free particles deserves some attention for its 

pedagogical value. Indeed, in this case, all the operators HNa ' haN , 

M , U , etc. can be explicitly constructed and the mass-shell space 

K m is well-known, At this point, the contact with Q.F.T. is easy. 

For instance, though field operators are by no means necessary in 

the above picture, they can be introduced quite well 18) 

5. Second quantization with Creation and Annihilation 

The picture described in the above section still leaves the number 

of particles invariant. The block diagonal form of the "hamiltonian" 
N 

generators h a is responsible for that. 

At least the advantage of this description was to emphasize the 

emergence of the operators h and M . 

Now we are going to generalize the scheme in order to permit that 

creation (or annihilation) occur. 

Naturally we maintain the principle that the exclusive mass-shell 

space jz is the eigenspace common to all the mass operators M m a 2 a3 . . "  But we cannot assume anymore that (2.7) and (2.9) are valid. 

In other words, the interaction cannot be constructed by giving a se- 

quence of N-body systems, in so far as we aim at particle creation. 

Therefore we reject the H N But it is natural to make the fol- a " 

lowing assumptions: 

a) For each positive integer N these exist the operators h N aN and 

all the possible h N commute amon5 themselves. 

We mean Ch N, h N~] = 0 including when N I N I • 

b) All the possible h N are functionally independent. 

c) They commute with the generators of the Poincar@ algebra. 

d) They carry ~ into itself and are hermitian in the rigged Hilbert 

space F C - ~  C P~ 
e) In view of taking into account indiscernability, we should add extra 

requirements which rule the behavior of the h~ under particle per- 
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mutations. 

This matter will not be discussed here. Let us say simply: these 

extra requirements are devoted to insure that the mass operators 

M have enough symmetric eigenstates. 
a 2 a 3 . . .  

f) The (half squared) mass operators M are defined by eq. (2.10) and 

the exclusive mass-shell J~ is the eigenspace common to all the M . 

The physical states are then obtained by linear combination with 

the vacuum and, of course, symmetrizstion. 

Now the generators h , and therefore the M also, are supposed 

to have non vanishin~ commutators with the particle number . 

As a result, ~ is not constant in the motion, i.e. the eigen- 

states of M are not associated with any definite value of ~ . 

These assumptions lead to some comments. 

First of all, we insist on commutativity in (a) . This property implies 

that the M are constsnts of the motion and have common eigenvectors. 

In (b) we made explicit an assumption which is usually implicit in 

the theory of N-body systems. 

Assumption (f) raises the problem of convergence. 

Defining the evolution operator by eq. (2.13), (2.1~) also rises a 

problem Of convergence. 

If the infinite product (2.13) exists, then U satisfies eq. (2.12) 

which permits in principle to start the formulation of a scattering 

theory (with a tremendous lot of mathematical rigor problems). 

Note that, owing to the difficulty of proving convergence in (2.10), 

(2.13), an alternative system of axioms assuming first the existence 

of an evolution operator U satisfying eq. (2.12) is more tractable. 

But for the present time we consider the assumptions (a) (b) (c) 

(d) (e) (f) because they exhibit a close analogy with some already 

familiar features of N-body hamiltonian dynamics. 

We can obviously construct an example of (a) (b) (d) which is not 

trivial in the sense that ~ is not conserved: 

Let B be any operator unitary in the rigged Hilbert space and such 

t h a t  [ B , ~ ]  / o . 

Then (a) (b) (d) hold true for 

where ~N are the free particle generators. a 
I n  t h a t  c a s e  i t  i s  e a s y  t o  l e g i t i m a t e  t h e  f o r m u l a s  M = B M B - 1  

U = B ~ B -1 where ~ and ~ are respectively the mass and evolut- 

ion o p e r a t o r s  f o r  f r e e  p a r t i c l e s .  Then  B maps e v e r y  e l e m e n t  o f  K 
m 
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onto an element of J/. m 
It is not easy to choose B in order to satisfy (c) non trivally. 

From a constructive point of view, the first serious task will be find- 

ing such an operator. 

This question is left for further investigation, but we already under- 

stand that the breakin ~ of particle number conservation will involve 

creation and annihilation operators in~ . 

Fortunately the transformation properties of these operators under 

Poincar~ group are well-known from the general theory of Hilbert spaces. 

This could lead us to employ an object similar to the free field 

operator of conventional Q.F.T. with respect to its covariance proper- 

ties and that we call the "off-shell field operator" 18) . 

It is different from its Q.F.T. counterpart because, roughly spea- 

king we work in ~ endowed with ~ p ~ whereas Q.F.T. stands within 

the mass-shell endowed with ( , ) . 

We expect that it will be the right ingredient for constructing B as 

we wish, since we control its properties under Poincar~ transformat- 

ions. 

For the moment we remain with this program to undertake and various 

other problems to investigate. 

For example: construct hNa by a trick more general than eq. (3.1). 

Define the physical scalar product ( , ) on the mass-shell space 

etc... 

Before we go further it might be neccesary to look back and achieve 

to clarify many points in N-body dynamics. 

At least we have attempted to open a window on a domain which could 

be of great interest in the future. 
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It is an honor to be invited here to speak to you about the origins 

of a field to which I contributed a number of years ago. It is gratify- 

ing to see how it has grown in the intervening years -to the point 

where a conference such as this can now be held- a conference which 

will undoubtedly stimulate still further interest and growth. 

Because I have not been active in relativistic dynamics for almost 

ten years, I will speak mostly of things which happened ten or more 

years ago, and leave the task of describing more recent developments 

to others. Much of what I will cover is described in more detail in 

the 1972 reprint collection edited by Edward H, Kerner, entitled "The 

Theory of-Action-at-a-Distance in Relativistic Particle Dynamics ''l. 

I will begin by outlining the various forms of action-at-a-distance 

relativistic dynamics. A more detailed discussion of predictive rela- 

tivistic mechanics will follow. Finally, because I always like to pre- 

sent at least one thing which is new, I will discuss a simple example, 

drawn from electromagnetic theory, for which the predictive point of 

view appears to fail. 

The action-at-a-distance point of view was predominant from the 

time of Newton to the time of Maxwell and Einstein. The time since 

Maxwell has, however, been an age of field theory, in which the action- 

at-a-distance point of view has been largely ignored. Recent.years have 

seen a reawakening of action-at-a-distance. 

Two distinct threads can be seen in this reawakening. The first 

starts with Schwarzschi ld  2, Tetrode 3, and Fokker ~, and runs through 
Dirac 5 to the electrodynamics of Wheeler and Feynman 6, which is itself 

a special case of the later relativistic mechanics of van Dam and 

Wigner 7'8. This thread is marked by manifest covariant, many-time 
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theories. The forces between particles act along light cones, or, in 

the case of van Dam and Wigner, through the space-like region between 

the past and future light cones. Equations of motion are coupled dif- 

ferential-difference equations. For Wheeler-Feynman electrodynamics, 

at least, this differential-difference structure can be viewed as a 

vestige of field theory which has not been removed: it arises because 

of the finite time required for the electromagnetic field to propagate 

from one particle to another. 

The other ~hread, to which predictive relativistic mechanics belongs, 

starts with a 1959 paper of Dirac ll. It is marked by equations of 

motion which are coupled ordinary differential equations. In Dirac's 

instant form -which is the form which has been picked up and developed- 

the action-at-a-distance is then instantaneous- as in ordinary non- 

relativistic Newtonian mechanics. The theory is a single-time theory, 

rather than a many-time theory. 

I will first review briefly the manifest covariant many-time theories 

of Wheeler-Feynman and Van Dam Wigner, and will then discuss predictive 

relativistic mechanics in considerably greater detail. Wheeler-Feynman 

electrodynamics is characterized by the action principle 

J =-F. + 

= extremum (I) 

Here a p and bp are the four-vector space-time coordinates of par- 

ticles a and b . The equations of motion which follow from this 

action principle are 

F_c ) 

where a dot denotes differentiation with respect to proper time. The 

antisymmetric electromagnetic field four-tensor F~9(b)(a ) describing 

the field at particle a due to particle b is the sum 

of advanced and retarded contributions; interactions take place along 

both past and future light cones, as shown in figure 1 . Thus the 
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Figure 1. Wheeler-Feynman electrodynamics . 
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equations of motion have a differential-difference structure: computat- 

ion of the force on particle a requires a knowledge of the positions 

and velocities of all other particles at both the advanced and retarded 

times. The mathematical theory of equations such as this is not in 

good shape. For linear differential-difference equations, specificat- 

ion of initial data along entire segments of the solution curves is 

needed to guarantee existence and uniqueness of solutions. The equat- 

ions of motion of Wheeler-Feynman electrodynamics, however, are non- 

linear differential-difference equations. The only rigorous results for 

these of which I am aware are a theorem of Driver for two particles 

in one dimension9, which shows that Newtonian initial data (specificat- 

ion of positions and velocities at one instant of time) can be enough 

to guarantee existence and uniqueness. The Van Dam-Wigner mechanics 

can be viewed as a generalization of Wheeler-Feynman electrodynamics 

in which the force on particle a due to particle b is determined by 

the position and velocity of particle b along the entire segment 

of particle b's world line between the past and future light cones. 

Conserved quantities in these theories are sums of the usual free- 

particle expressions plus an interaction contribution. The conserved 

energy momentum four vector P~ and the angular momentum-center-of- 

mass momentum four tensor M~ have the forms 

! 

l 

where p i and M' are the interaction contributions Those inter- ~ 
actions contributions are expressibleas integrals over the world lines; 

physically they represent energy-momentum (or angular momentum-center- 

of-mass momentum) in transit, which has left one particle but not yet 
¢ 

arrived at another particle. The P~ are expected to vanish asympto- 

tically when all of the particles are well separated. However, as was 

first pointed out°by Van Dam and Wigner 8, M~ need not vanish asymp- 

totically for long-range forces such as those of electrodynamics. The 

reason is fairly simple once it has been pointed out. The interaction 

energy-momentum P~ falls off like (interparticle distance) -1 for 

forces which fall off like (interparticle distance) -2. When the momen- 

tum is multiplied by a distance to form an angular momentum, one has 

interaction contributions of the form (interparticle distance) -1 x 

(distance) which need not -and in general do not- vanish asymptotically. 

Interaction contributions M~, which do not vanish asymptotically 

for long range forces also appear in single-time instantaneous action- 
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at-a-distance versions of relativistic dynamics. 

The reconciliation of the half-advanced half-retarded interactions 

of Wheeler-Feynman electrodynamics with the usual retarded interactions 

plus radiation dampimg follows from the absorber condition. Dirac 5 

showed that the radiation damping force on particle a was derivable 

from a field ~F--~ tad(a)_ _ , which could be obtained as the limit as the 

source point approaches the field point of ~2 ~F (a) - F (a) ] . 
As a consequence, L ~v ret ~v advJ 

~v r~E p~ ~ v  
b 

The absorber  c o n d i t i o n  i s  t h a t  the f i e l d ~ . t F ~ r e ~  - ~ adv ) van i sh ;  
b 

since the retarded and advanced fields have the same sources~ this 

field obeys free field equations and hence vanishes for all time if 

it and its time derivative vanish at one instant of time. A generali- 

zation of Wheeler-Feynman electrodynamics in which the retarded field 

minus the advanced field need not vanish has been given by Rohrlich lO. 

I will now take up the instantaneous action-at-a-distance theories. 

Key ideas in this approach, which I will discuss in turn, are (1) a 

Hamiltonian formulation in which the Poincar~ group is canonically 

represented, (2) world line invariance, (3) the often unremarked tacit 

assumption that physical coordinates are canonical coordinates, and 

(4) the assumption that the given equations of motion hold for all 

time, from past infinity to future infinity. 

Key idea (I)~ the requirement of a Hamiltonian formulation, was 

motivated by the desire to obtain a ~quantum theory via the conventio- 

nal route of quantizing a classical Hamiltonian theory. Relativistic 

corrections to non-relativistic Hamiltonian theories can be convenient- 

ly treated this way. In atomic physics, for example, the non-relati- 

Vistic problem is already difficult to solve to the desired accuracy; 

thus one would like to treat relativistic corrections within the same 

Hamiltonian framework so as to take advantage of the hard-won unders- 

tanding of the non-relativistic problem. A relativistic Hamiltonian 

mechanics, as outlined by Dirac, consists of a set of ten generators 

satisfying the Poisson bracket algebra of the Poincar~ group. If we 
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assign the letters 

space translations, 

then generators must satisfy, in dyadic notation with 

dyadic, 

H, ~, ~, ~ to the generators of time translations, 

spatial rotations, and pure Lorentz transformations, 

I the identity 

[ ~ ' , ~ ] - -  o (Ta) 

CW, HI = o (Tb) 

[~'. 5'J =-I ~ J (7c) 

[ . ,  ~ ' ] -  o (Td) 

[~ ,J l  - - ~  ~ ~e~ 

and 

From this point of view, the problem of constructing a relativistic 

dynamics is seen as a problem of finding a set of generators H, P, 

J, K, depending on canonical coordinates and momenta, which satisfy 

the Poisson bracket relations (la) - (lj) . 

Key idea (2), the notion of world line invariance, applies only to 

point particles. Stated most simply, it is the requirement that obser- 

vers in different inertial frames agree as to what are -and what are 

not- allowed sets of particle world lines. To make this more explicit 

with a concrete example, refer to figure 2 which shows a pair of 

world lines for two particles moving in one dimension. Suppose that 

the equations of motion are second order ordinary differential equat- 

ions giving particle accelerations as functions of positions and ve- 

locities, with enough regularity so that specification of Newtonian 

initial data -i.e., specification of initial positions and velocities- 

is sufficient to guarantee existence and uniqueness of the solution 

curves, which are the sets of world lines. Then an observer in frame 

S , using space-time coordinates (x,ct) , would specify initial pos- 

itions and velocities at points Pc and Qo and obtain the world 
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Figure 2 . World line Invariance . 

lines shown in figure 2. An observer in frame S t using space time 

coordinates (x/~ ct/) , would specify initial position and velocities 

at points Po and Q~ . Let the initial positions and velocities at 

points Po and Qj be the Lorentz transforms from S to S z of the 
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the other three ideas. Interaction is possible, but the canonical 

particle coordinates are then not the coordinates of point particles. 

The work of Thomas 17, of Bakamjian and Thomas 18, and of Foldy 19 belongs 

to this branch. The other branch gives up the Hamiltonian scheme init- 

ially, opting instead for a Newtonian format in which particle accele- 

rations are given as functions of positions and velocities' Douglas 

Cuttle, Edward Kerner, and I started this approach, which was not 

manifestly covariant in its original formulation. A Hamiltonian scheme 

for these Newtonian equations of motion can be obtained via the Lie- 

Konigs theorem, as suggested originally by Kerner2 O, by giving up the 

requirement that physical positions be canonical. This Hamiltonian 

scheme can be made unique up to canonical transformation by imposing 

the condition of asymptotic reduction tothe usual free-particle form. 

Because I was asked to speak about "the origins of predictive rela- 

tivistic mechanics", it is perhaps appropriate that I describe how I 

became involved in this field. In 1962-63 both Douglas Currie and I 

were postdoctoral fellows at Princeton University, where I heard Doug 

speak about the zero interaction theorem, which was at that time inter- 

preted as proving that instantaneous action-at-a-distance was impossible 

in relativistic dynamics. I remember being skeptical of this interpre- 

tation even then, based on the following argument: Specification of 

initial positions and velocities is sufficient to determine a unique 

set of world lines in the non-relativistic limit. If relativistic 

correctionscan be calculated by perturbing about the non-relativistic 

limit, then initial positions and velocities would be sufficient to 

determine a unique set of world lines in the relativistic case also, 

in the form 

By differentiation, 

q = f~ (t; initial conditions). (8a) 

one would have 

and 

Equations (8a) and (8b) could in principle be solved for the initial 

conditions; if these solutions were inserted in (8c), one would have 

equations of motion of the form 

= fi(rl,r2 '''''~n; ~I'~2 ' .... '~n ) i = 1,2,3,....,n 
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t 
positions and velocities at Po and Qo for the solutions found by 

the observer in S . Then world line invariance holds if the observer 

in S ! , using this initial data, obtains world lines which are the 

Lorentz transforms of those obtained by the observer in S -i.e., which 

are the same as those found in S when drawn in a space-time diagram 

such as figure 2. The notion of world line invariance is, of course, 

not confined to equations of motion which are ordinary differential 

equations- it holds, for example, in the ordinary electrodynamics of 

point particles, in Wheeler-Feynman electrodynamics, and in the mecha- 

nics of van Dam and Wigner. All that matters is that different obser- 

vers obtain sets of world lines which are the same from a physical 

point of view. 

On the other hand, world line invarisnce need not hold for particles 

which are not point particles. The coordinate of a particle with struc- 

ture -which can be thought of as a generalization of the non-relativis- 

tic notion of a center of mass- is some kind of an average over that 

structure. Computation of such averages in different Lorentz frames 

need not yield physically identical world lines, as pointed out in 

an illuminating discussion by Gordon Fleming 12 . Thus lack ofworld 

line invariance is not a fatal flaw -it merely means that the parti- 

cles are not point particles. 

The third key idea is very simple -it is the often unremsrked tacit 

assumption that the physical coordinates of point particles, satisfying 

the world line invariance condition, are the canonical coordinates of 

the Hamiltonian formulation. The fourth key idea is equally simple-the 

equations of motion include all forces which act on the particles- the 

given equations of motion are the equations of motion for all time. In 

the case of instantaneous action-at-a-distance with point particles, 

for which world line invariance must hold, this implies that local ex- 

ternal perturbations are not allowed. In figure 2, if I interfere with 

the motion of particle 2 at world point Q~ , predictions made by the 

observers in S and S' will not in general agree. 

I have spelled out all of these key ideas explicitly because there 

is a certain incompatibility among them. The famous zero interaction 

theorem of Currie, Jordan, and Sudarshan 13 , proved originally for 2 

particles, extended to 3 particles by Cannon and Jordan l~, to N par- 

ticlesby Leutwyler 15, and clarified in one and two spatial dimensions 

by myself 16, shows that all four of these key ideas can hold only for 

a free particle dynamics; at least one of them must be given up if 

the particles are to interact. The development splits into two branches 

at this point. One branch gives up world line invariance, but maintains 
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for an n-particle system -i.e., instantaneous action-at-a-distance! I 

recall arguing in this vein with Currie, but neither of us could convince 

the other and it was forgotten until I took my first job as a young 

assistant professor at the University of Delaware in the fall of 196g. 

There I met Ed Kerner,who was working with action-at-a-distance ideas. 

He explained his ideas to me -he was working out a systematic reduction 

of Wheeler-Feynman electrodynamics to instantaneous action-at-a-distance 

form, order by order in powers of ~c 2 . Kerner's work was motivated by 

the fact that Wheeler-Feynman electrodynamics did not have the self- 

energy divergences which have plagued both classical and quantum field 

theories; he hoped to obtain a Hamiltonian formulation of classical 

mechanics via the Lie-Konigs theorem, which could be quantized via 

the usual Poisson bracket to commutator prescription to obtain a quantum 

electrodynamics which would at least be free of divergent self-energies. 

I remember being struck by the fact that relativity played no role 

in his computations. The electrodynamics from which he started was 

certainly relativistically invariant; there must be some vestige of this 

invariance in the approximate equations of motion he was deriving. I 

puzzled over this for some time; the ultimate result was my first paper 

on this subject 21, which appeared in 1967 after a prolonged exchange 

with a skeptical referee (the paper was originally submitted in November 

of 1965). This paper contained, among other things, my derivation of 

what have come to be known as the Currie-Hill conditions. These same 

conditions were derived independently by Currie, whose paper 22 was sub- 

mitted about a month before mine. Because these conditions have played 

an important role, I will sketch my original derivation of them for 

the special case of two particles in one dimension. In the notation of 

Figure 3, Qo and Po are simultaneous in the inertial frame S ; 

Qo I and Po are simultaneous in S t . Thus, an observer in S compu- 

tes the acceleration at P in terms of coordinates and velocities at o 
Qo and Po ' while an observer in S t computes the acceleration at 

Po in terms of coordinates and velocities at Q~ v and Po " We require 

that the two observer's expressions for the acceleration at Po ' written 

as 

= ( 9 )  

in S and as 

i ! 
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in ~/ (same fl in both S and S ), agree when one makes use of 

the Lorentz transformation formula for accelerations 

~ (?~) ,-'~" (11) 

to relate the numbers assigned to the acceleration at Pc by the two 

observers. 

This requirement is most easily enforced by imposing it upon the 

infinitesimal Lorentz transformation. Inasmuch as it is (from the 

viewpoint of group theory) the requirement that the infinitesimal 

transformation on the form of the equations of motion vanish, the 

group property of the Lorentz transformations then guarantees that it 

holds for all proper Lorentz transformations. We now think of S z as 

moving with respect to S with an infinitesimal velocity z = ~ . 

Then x I = x - t.~ and t~= t - x.~ are the kinematical transforma- 

tions; t(Q~) - t(Qo) = -[~l(Po) X2(Qo~.~p takes account of the 

change in simultaneity. Using these 

kinematical world-point shift 
Lorentz from Qo to Q~ 

transformation 

~' (Po) = 

kinematical Lorentz world-point shift 
¢ transformation from Qo to Qo 

(12) 

If we insert the transformations (12) into (lO), expand to first 

order in ~ , and demand agreement with (9) to first order, we obtain 

the condition 

- 

We now use al = fl and assume that the acceleration of particle 2 
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has been written in the instantaneous action-at-a-distance form, a 2 = 

f2(xl2,Vl,V2) . We then arrive at the differential statements of the 

Lorentz invariance of a one-dimensional two-body instantaneous action- 

at-a-distance theory 

T, a n d  L a r e  where the linear first-order differential operators 

defined by 

t =- -~,=,o',~ C~/~c,=] + C.(- ,o ' ; ) .C~l~,)  + (lSa) 

(14b) 

The generalization of these conditions to N particles and 5 dimen- 

sions is straightforward. The conditions are quite general, and apply 

to an~v relativistic instantaneous action-at-a-distance theory in which 

the particles are point psrticles. Unfortunately they are non-linear, 

which makes the task of writing down particular solutions rather dif- 

ficult. The general solution of (15)-(l~) has, however, been found in 

implicit form 23. This general solution is characterized by two arbitra- 

ry functions f(~,~) and g(~.~) . With ~(~,~,~) and ~ ( ~  ) 

defined by 

~'~) (15a) 

and 

we have 

(15b) 

X4~- ~(4-I(Z = (~(~]4;, (16a) 
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(16c) 

Equations (15)-(16) define a transformation from the physical variables 

Xl2 , Vl, v 2 to new variables E ,~, ~ . The solutions of (13)-(l~) 

are then 

(17a) 

and 

(17b) 

The equations of motion (17) can actually be integrated to obtain the 

world lines in parametric form; the result is 

_~ ~C~,~) ]} (18a) 

A. ~-',~, [ 
'a~ 

- ,g. "~4~(~'~) ] } (18b) 

*R 

- ~. ~ 

' i% ~Ic~ ,~) ~-',, 

l ] (18d) - R. ~ 

The constants of the motion are Cl, c2, ~ and ~ . Equations (18a) 

and (18b) give the world line of particle 1 with ~ as parameter; 

similarly (18c) and (18d) give the world line of particle 2 with 

as parameter. The choice of ~ fixes the Lorentz frame: equating the 

expressions (18b) and (18d) for t yields the relation between the 

parameters ~ and ~ in the form 

~(~,~/, ~) = ~ 9(~,~,~) (19) 
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Implicit general solutions such as the one found above are, unfor- 

tunately, not as useful as explicit solutions. Some explicit closed 

form solutions have been found, including the very amusing example 

_Q~= ~a = (~t-q~k) (20) 

which was discovered independently by Kerner 24 and by Currie. The exam- 

ple (20) is actually both Galilean and Lorentz invariant! There are no 

limits on particle velocities; the velocity of light c does not enter. 

Galilean invariance is obvious; Lorentz invariance can be verified by 

showing that (15) and (l~) are satisfied, or by writing down the solu- 

tions, which are the parabolas, 

x I = A + 8 %  * (ICe~-DI) v" (21a) 

and showing explicitly that the Lorentz transformation carries solu- 

tions into (different) solutions: For the world line of particle l, the 

Lorentz transformation 

X, --- (22a) 

~/ 1 - (~/c~ ~ 
~. = ~' ÷ v '~ /c  t 

~/'4 - ('O'/c) z (22b) 

carries (21a) into 

- A + ~, ¢+,o'x~/c"- ÷ 
V r i -  (v/c)" 

+ ¢ ( ¢ ( ¢ +  v'x;/~'-) 
%/4 - (v/c)': * ~ I 

which can be solved for x~ to obtain 

' :A' ÷ 
X I (25) 

with 
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A' = Vt-(, ,- / ,)" [ A - c'~,,~,~ (2~a) 

.~, = ~ ÷ ('V'lc) (2Zl-b) 

C"= [ , t -  (V/C)~.I • [ ~ e('O'IC)]~C (a4-c) 

D'-  [~-1<~) ' ] . [4 ÷ ec,,,l:)]" {~ - 

- AC (~lc) [ , ] ÷  S (~ ' l c ) ]4+  

4.¼ ( , - /o 'c"[~ ,  ~ c < o ) ] " }  (2,~d) 

A similar computation for the world line of particle 2 shows that the 

Lorentz transformation 

~' = ~/4 - (.~/0 ~ 

V + ~ ~,~/c ~- 
= ( 2 5 b )  

J 4 - ~:~'/c) 7" 

carries (21b) into 

I =  A' D t x ,  + ~ ' ~ ' -  ¢ I c ' V +  I (26) 

with the same A l, B l, C l, D l . Actually, the dynamics (20) has the 

general linear group on x and t (which has the Poincar~ group and 

the Galilei group as subgroups) as invariance group; it is known that 

transformations of the general linear group carry parabolas~to parabolas. 

The above example, although it shows that relativistically invariant 

instantaneous action-at-a-distanqe dynamics is possible, possesses two 

unphysical features: it is one dimensional, and it ~oes not exhibit 

free particle motion at infinity. Unfortunately it seems very hard 

to find physically more realistic examples in explicit closed form. 

For electrodynamics, which was always the touchstone for Ed Kerner 

and myself, the best that thas been done as far as I know is an ex- 

pansion to low order in powers of e 2 . The convergence of this series 

has not to my knowledge been proven; furthermore truncation of this 
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series at some finite order leads to an only approximately relativisti- 

cally invariant dynamics. The difficulty arises from the fact that clas- 

sical electrodynamics contains only a mass m , a charge e , and the 

velocity of light c . No dimensionless combination of these is possible; 

expansions in powers of e 2 turn out to be expansions in powers of 

the classical electron radius e2/(mc 2) divided by an interparticle 

separation. The closest thing to a closed-form expression for the equat- 

ions of motion of instantaneous action-at-a-distance electrodynamics 

that I am aware of is the set of coupled integrodifferential equations, 

given in my initial paper 21, which characterize the equations of motion 

for the two particle case. 

The fact that we have given up the Hamiltonian formulation becomes 

a problem when we want to construct the corresponding quantum theory. 

A way around this difficulty was suggested by Kerner 20, who proposed 

that the action-at-a-distance dynamics in Newtonian format could be 

cast into Hamiltonian form by invoking the Lie-Konigs theorem. The 

Currie-Jordan-Sudarshan zero interaction theorem is circumvented by 

giving up the idea that physical positions are canonical variables in 

the Hamiltonian scheme. 

The approach to Hamiltonian dynamics via the Lie-Konigs theorem 16'20 

applies to any set of sec0nd-order differential equations ~i =~i(~l ' 

~l,...,v~;~ t) specifying particle accelerations as functions 

of position, velocity, and time. These are first rewritten as the first- 

order system 

. . . .  , , - - . ,  ( 2 7 )  

Here we have in mind that Yo = t, yi = xi, h i = v i = Yi+N ' and 

hi+N = F i ( Y l ' ' ' ' ' Y N ;  Y N + I ' ' ' ' '  Y2N; Yo ) f o r  i = 1 , . . . ,  N . We s e e k  
to derive Eqs. (27) from a variational princiPle of the form 

2~ 

[=4 

wherein the yi(Yo)~ i = 1,..., 2N. are to be independently varied. 

The Euler equations of (12) take the form 

where the matrix --~'a is defined by 

- ( 2 9 )  
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In order that it be possible to solve the Euler equations for the 

derivatives (dyj/dyo) , the 2N x 2N matrix __ ~j (with i ~ 0 

j ~ 0) must be nonsingular. Solving these Euler equations for dyj/dy o 

yields the specified equations (27) if the Uo satisfy the different- l 
ial conditions 

4~ 

Here we have allowed i = 0 because the equation for i = 0 is a 

consequence of the other 2N equations. 

Once Eqs. (30) have been solved to yield a set of U i with non- 

singular ~ij(i ~ O, j ~ 0), and hence a variational principle of the 

form (28) , a Hamiltonian formulation can be obtained by solving Pfaff's 
2N N 

problem to reduce the differential form ~ UidY i to ~- PkdQk 
i=l i=l 

(the fact that this can always be done is the principal result of Pfaff's 

classic memoir). The Qk and Pk are the canonical coordinates and 

momenta, The Hamiltonian is H = -U ° , and must be reexpressed in terms 

of the canonical variables Pk ' Qk obtained by solving Pfaff~s pro- 

blem. 

Casting the dynamics into Hamiltonian form is, however, not enough. 

The transformations of the Poincar~ group must be canonical transfor- 

mations in that Hamiltonian scheme. Canonically inequivalent Hamilto- 

nian formulations lead to inequivalent quantum theories when standard 

quantization methods are applied25; thus equivalent observers must be 
° 

related by Canonical transformations if they are to have equivalent 

quantum theories. In general only a subgroup of the invariance group 

of the differential equations (27) with which we started will be cano- 

nically represented. ~ Starting with a dynamics which is invariant under 

the Poincar~ group does not guarantee that the Poincar~ group will be 

canonically represented in the Hamiltonian scheme obtained via the 

procedure I have just outlined. Thus it is neccesary to look at the 

question of invariance in more detail. 

Start with infinitesimal transformations 

which l e ave  the  o r i g i n a l  d i f f e r e n t i a l  e q u a t i o n s  (27)  i n v a r i a n t ,  i . e .  
such t h a t  both (27)  and 
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hold for small E . Here the Greek ~ indexes the different transfor- 

mations. Insert (31) in (32), expand to first order in £ , compare 

with (27), and demand that the coefficient of E vanish. The result 

is the condition 

where 

and 

L~ &~ - ]) ~r~ + &~ : ~  = O (33) 

Equation (33) is the condition that the transformation (31) leave the 

differential system (27) invariant. On the other hand, the condition 

that the transformation (31) be a canonical transformation is that it 
2N 

changes the differential from ~ which appears in the varia- i=o UidYi 

tional principle (28) by an exact differential -i.e., that 
m~ 

7 ['li,;c~,...,,,d.,..Da,,d.,: 'u.,;(,d.L ' ' = . . . .  , ~ , , ) ~  ] 

= ~I~ + OC~9 (36) 

for some ~I~ . Inserting (51) in (56), expanding to first order in 

, equating coefficients of ~ on both sides, and demanding that 

the result hold for arbitrary dy i yields 

z~ 

+ = (375 

as the  c o n d i t i o n  t h a t  (31)  be a c a n o n i c a l  t r a n s f o r m a t i o n  i n  the  Hami l -  

t o n i a n  scheme. An e q u i v a l e n t  c o n d i t i o n  26, which can be used to  t e s t  

whe ther  o r  no t  a g i ven  t r a n s f o r m a t i o n  i s  c a n o n i c a l ,  i s  

I t  can be shown t h a t  (58)  imPl ies.  ( 5 3 ) ;  however (53)  does no t  imp ly  

( 5 8 ) .  Make the  d e f i n i t i o n  
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It can then be shown 26 that G~ is a conserved quantity; this is 

Noether's theorem in the present context. It can also be shown 26 that 

(4o) 

which holds for i = 0,1,...,2 if h o is defined to be 1. Here the 

brackets ~.,.] are Poisson brackets. The result (40) shows that G~ 

generates the canonical transformation (31) with which it is associated 

if go = 0 ; if go ~ 0 , the formalism compensates for the inability 

of the Poisson bracket to transform the time t = Yo by shifting the 

other variables an amount -£ g~(dYk/dYo) along the solution curves 

of (27). 

A deeper understanding of the result (40) can be had by taking a 

closer look at the group of invariance transformations of (27), which 

group we call G . The subgroup of G which is canonically represented 

will be denoted by G c . There is a subgroup H of G , generated by 

transformations of the form 

(41) 

where ~ is an arbitrary function, which leaves solution curves inva- 

riant -i.e., which carries a solution yj = f~(yo ) of (27) into 

/ - fj(y~) with the same fj . It can be s~own 26 that H is an Yj - 
invariant (normal) subgroup of both G and G c . Thus we can decompose 

G (or G c) into cosets relative to H and consider the factor groups 

(quotient groups) G/H and GC/H . Each element of a given coset has 

the same effect on a solution curve yj = fj(Yo ) of (27) . Thus if 

we identify physical states with the solution curves (i.e., think of 

the physical state as a state sub-specie aeternatis rather than an 

instantaneous state), it is the transformations of the factor groups 

G/H and Gc/H which change the physical state. 

Each coset in the decomposition relative to H contains one and 

only one transformation which leaves the time t = Yo fixed; thus 

the transformations which leave t = Yo fixed provide faithful repre- 

sentations of the factor groups G/H and Gc/H which change physical 

states. In particular, the transformations generated by the usual 

Poisson brackets in accordance with (40) provide faithful representa- 

tion of the group Gc/H of canonical transformations which change physi- 

cal states. 
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All of this can be carried through for instantaneous action-at-a- 

distance equations which satisfy the Currie-Hill conditions. But there 

is an embarrassment of riches -a great many canonically inequivslent 

Hamiltonian formulations can be obtained. For example, multiplying all 

of the U i by the same constant yields a new Hamiltonian formulation 

canonically inequivalent to the old. Which canonical formulation is then 

to be chosen?For a non-dissipative dynamics in which the motion reduces 

to free particle motion at large interparticle separations, this ambi- 

guity can be resolved (up to canonical transformation) by the demand of 

asymptotic reduction to the usual free particle Hamiltonian formula- 

tion 27. The argument begins by re-writing the conditions (30) which 

determine the U i in the form 
2N 

+ = 

where 

ZI, I 

Make the definition 

¢:o 

The condition (37) is then just ~i = 0 . It is straightforward to 

show that 

= 

¢ = 4  

w i t h  D and G~ g i v e n  by (35)  and ( 3 9 ) .  Now %at the  U i , i t 0 

be p r e s c r i b e d  on some h y p e r s u r f a c e  which does no t  l i e  a long  the  char -  
a c t e r i s t i c s  o f  the  p a r t i a l  d i f f e r e n t i a l  o p e r a t o r  D ( t h e s e  c h a r a c t e r -  

i s t i c s  are just the solution curves of (27); D is the substantive 

derivative which effects an infinitesimal transformation along these 

solution curves)~ and let ~ be prescribed everywhere (Prescribing 

removes the arbitrariness associated with adding a gradient to 

the U i . Different choices for ~ give rise to canonically equivalent 

Hamiltonian formulations). Let ~ = 0 on this hypersurface, and 

prescribe ~ off of the hypersurface by the demand that G~ be a 

conserved quantity so that DG~ = 0 . Then (~2) propagates the values 

of the U i on the hypersurface along the solution curves of (27) 

[along the characteristics of D~ while (~5) propagates the condition 
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~j = 0 for the canonical representation of the transformation (31) 

along the solution curves of (27). 

The above analysis is applied to relativistic dynamics by taking 

the hypersurface to be at infinite interparticle separation where the 

particles are free. The U i are given the forms appropriate to the 

usual free particle Hamiltonian formulation, for which the Poincare 

group is canonically represented; (42) and (45) then propagate this 

canonical formulation into the interacting region. If the particles 

are free at t = -~ and at t = +~ but interact at finite times, 

one is of course not entitled to prescribe initial conditions at both 

t = -~ and t = +~ . This, however, is a problem only for dissipative 

Systems. 

The relation between the original physical particle coordinates and 

canonical coordinates is determined by the solution to Pfaff's problem. 

Only in regions where the particles move like free particles can these 

be identical; when the particles interact, the canonical coordinate 

differs from the physical particle coordinate by an interaction piece. 

The same thing happens to constants of the motion, which also acquire 

an interaction piece (for the Hamiltonian and the linear momentum, 

this is required by a zero-interaction theorem which appears in one 

of the van Dam-Wigner papers8), That this should happen is not surpris- 

ing when one compares the action-at-a-distance and field theoretic 

descriptions of electrodynamic interactions. If one ignores difficulties 

with infinite self-interaction, then the Hamiltonian H for the field 

theoretic description has, in an obvious notation, the form 

H = Hparticle + Hfiel d + ~ Hparticle_field 

where ~ is a coupling constant. One can contemplate pushing the par- 

ticle-field coupling to higher order in ~ via successive canonical 

transformations; when this is done, the old canonical particle position 

coordinates, differ from the new canonical coordinates by an interac- 

tion piece. It would be of considerable interest to see in detail what 

relationship, if any, the new particle Hamiltonian obtained via this 

process has to the particle Hamiltonian obtained from the Newtonian 

format action-at-a-distance theory via the Lie-Konigs theorem. 

The discussion of the approach to a Hamiltonian dynamics via the 

Lie-Konigs theorem would not be complete without some discussion of 

the problems and the prospects. The transition from classical Hamilto- 

nian mechanics to quantum mechanics is plagued with ambiguities, such 

as operator ordering. It may be that one should start with a quantum 
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theory right away -or that the quantum action-at-a-distance theory 

should be obtained via a suitable reduction from quantum field theory 

with the classical action-at-a-distance theory serving only as a use- 

ful guide- or that quantization methods developed in the years since 

Ed Kerner and I worked on these Problems will provide the answer. Another 

difficulty is the messiness of the results for realistic interactions, 

such as those of electrodynamics, which Kerner and I have always regard- 

ed as the touchstone. This messiness suggests that either the element 

of simplicity in instantaneous action-at-a-distance dynamics of the 

kind Kerner and I worked with has not been found, or that the action- 

at-a-distance view is not fundamental, but merely a useful computational 

tool. On the other hand, the action-at-a-distance viewpoint may provide 

insights not otherwise easily available. For example: the fact that 

expansion in powers of e 2 is really expansion in powers of e2/(mc2r) 

at the classical level, where r is an interparticle separation, sug- 

gests that the piling-up of factors of 1/r in non-relativistic reduc- 

tions from quantum electrodynamics may arise from ignoring the role 

played by the classical electron radius e2/(mc2). 

It is always important to know the limitations of a theoretical 

point of view. Towards this end I would like now to discuss simple 

example, drawn from electrodynamics, for which the predictive point of 

view appears to fail at high energies. The example is the special case 

of the half-advanced half-retarded two-body problem of classical elec- 

trodynamics in which the motion is confined to one dimension because 

of initial conditions. The equations of motion are 

~c,, = -~ C,~-t,~,lc)~] "(~ ,~.[ (t;,),a,, + (E%,,~.] (~-Ta) 

_ I a~ ~ [ 4- e',.Ic)=] ~ e[ (E=),=t,,. (e.) , . . ]  (~Tb) 
where 

e 

( E , ) e  = , , l  

X t t  

-e. 

( E ) t _ - -  " -a.. " 

4 e 'u'd6 

4 ,u-.It. rt{" 

,c -_~=lc. ] 
.I ÷ ¢ = / t .  ~ a v  

4-~/¢ ] 

(#8a) 

(a8b) 

(~8c) 
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"[_¢ . ,4 +¢llc _] 
(~8d) 

Here v i and a i are the velocity and acceleration of the i th parti- 

cle, Xl2 = xl(t l) - x2(t 2) is difference between the position of 

particle 1 at time t I and particle 2 at time t 2 E. is the elec- 
.th z 

tric field felt by the z particle; subscripts adv , ret indicate 

whether the positions and velocities of the other particle are to be 

evaluated at the advanced or retarded time. The particle's charge and 

mass are denoted by e and m ; c is the velocity of light. 

Consider now the case of symmetric motion, for which vl(t) + 

+ v2(t) = 0 . This problem has been solved numerically at low to 

intermediate energies by Anderson and yon Baeyer 28, and in the high 

energy limit by myself. If one plots the distance of closest approach 

against energy, it looks something like the sketch in figure $ . The 

iterative procedure used by Anderson and yon Baeyer failed to converge 

for asymptotic particle velocities greater than about 0.9545 c , 

corresponding to an energy (for one of the particles) of about 3.353 mc2; 

the distance of closest approach decreased monotonically up to that 

point, and was (Xl2) min = 0.9077 e2/(mc2) at the point where the 

iteration would no longer converge. A previously unpublished high- 

energy-limit solution of my own has a distance of closest approach 

which is exactly e2/(mc 2) . Thus one has a problem for which the 

Newtonian initial data v I = v 2 = 0 , x I - x 2 = d, x I + x 2 = anything 

is not sufficient to guarantee a unique solution for d lying between 

0.9077 e2/mc 2 and e2/mc 2 . On the other hand, a theorem of Driver 9 

shows that such initial data is sufficient to guarantee existence and 

uniqueness of the solution for d sufficiently large. 

I will finish my lecture by sketching the way in which my high- 

energy-limit solution can be obtained. The particle world lines for 

this solution are sketched in figure 5 • The feature which makes a 

solution possible is the observation that, in the high-energy-limit 

segment ABC of the world line of particle 1 and segment A t B t C t of 

the world line of particle 2 are dominated by interactions along one 

light cone, while segment CDE of the world line of particle 1 and seg- 

ment C I D t E ! of the world line of particle 2 are dominated by inter- 

actions along the other light cone. This can already be seen in the 

numerical computations of Anderson and von Baeyer: their figures 2 

and 3 show that the acceleration curve develops a double peak as the 

energy increases; one peak is due to the advanced interaction while 
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the other peak is due to the retarded interaction. The one dimensional 

two-body problem with interaction along only one light cone can be 

solved exactly, as shown by Robert Rudd and myself29; this exact solut- 

ion is possible because the equations of motion are differential equat- 

ions rather than differential-difference equations when the interaction 

occurs along only one light cone. The exact solution with interaction 

along the light cone from B to B / can be used as an approximation 

to the segments ABC and A / B I C/; the exact solution with interaction 

alomg the light cone from D to D / can be used as an approximation 

to the segments CDE and C / D p E v. Matching position and velocity 

for these approximations at C and at C t leads to the conclusion 

that the distance of closest approach is e2/(mc 2) in the high energy 

limit. Half of the turning for particle 1 occurs at B , with the 

other half at D . 

Now for the details, which make use of the results for the world 

lines with interaction along one light cone obtained by Rudd and Hill 29, 

hereafter refered to as RH . For simplicity the velocity of light c 

is 1 . The results from RH are used with m I = m 2 = m and ele 2 = 

e2/2 (since we are dealing with half advanced - half retarded 

interactions). The needed expressions for the world lines are given 

by RH equations (ll)-(15); in the high energy limit these can be ade- 

quately approximated by 

E2( E2 _ ~m2)~ b I b 2 = 2m3e2E-2(E 2 4m2) -1 
= = - , and 

~4 : ~ - ( KI~J - ~o (~9a) 

~. : ~ , ~ ( ~ m ~ .  E'!  C ~  4 ~ * )  -4 (5o) 

~,-~,o : e,.E t ~ - ~ ) ' ~ ' ~ ' - 4 ~ - )  "'~ (Sla) 

~.-~.o = 9.'~ {~:- ~)l~(Si-4~v,4")li#t (51b) 

terms in RH equations (13)-(15) have been neglected in The tanh -1 

obtaining the approximations (49)-(52). These tanh -1 terms, which 

are down by a factor (m/E) 5 in RH eqs. (13) and (l~), and by a factor 

(m/E) ~ in RH eq. (15), contain the ~t dependence which is characte- 

ristic of coulomb interactions in the asymptotic region, but with the 
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Figure 4. Distance of closest approach versus 
asymptotic velocity. 
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Figure 5, The half advanced half retarded problem 
in the high energy limit. 
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wrong coefficient since interactions along only one of the light cones 

are taken into account. 

In order that the world lines be symmetrically placed with respect 

to the origin x = t = 0 , demand that the value of x I and x 2 at 

their respective turning points xlO = (K/E) + x ° + b I and x20 = 

= (K/E) - x ° - b 2 be the negatives of one another (this implies 

K = 0 ) and that the turning times tl0 and t20 be negatives of 

one another; this implies 

tlO = ~x ° and t20 =-~x ° 

To obtain an approximation to the world line of thehalf-advanced 

half retarded problem for t I ~ 0 and t2~ 0 , choose 9 = -1 and 

make the Lorentz transformation 

~' ~- ~r~ ~ ~ +  e ' x '  

where v = E-l(E 2 - ~m2) ~2 . The transformed world line of particle 

1 (wich gives a high-energy approximation for the first part of the 

motion) written in terms of v (instead of E) is 

/ ) [ ( ' '  /':] 
• , .t. X o  = . . . . .  X o  - 

J ~ _ ~r~ ~z ~/.1 - ~ r  L 

This can be rewritten in the form 

[ ¢ ][ .t + ,," . x~.,. z,,o- ~:, _ .  C4-~') t - ~  
(53) 

which can easily be shown to be the equation of a hyperbola. The 

asymptotes are 

x'~-Xol/ l+v _ o 
V 

2"g" 
X1÷ ~- xo --0 

(5~a) 

(5~b) 
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In the high energy limit these simplify to 

~i = ---" " X', = --~, 2m 

This is the origin of the claim that the distance of closest approach 

in the high energy limit is just the classical charge radius e2/m . 

One can also see that the scale of length and time in the region where 

the velocity changes rapidly is set by bl N 2(e2/m)(m/E) 4 in the high 

energy limit. 

The other half of particle one's world line, as well as the t< 0 

and t >0 pieces of particle two's world line can be approximated with 

similar hyperbolas. It is also possible to approximate the whole world 

line by the somewhat more complicated analytic form 

c4 ]= [ x~- ,c. c4 ~) ~ ~ ~ ] (55) 4÷~ L 

which, in the high-energy limit, reduces to each of the two approximat- 

ing hyperbolas in each of the two regions. This can be seen by writing 

it in the form 

x~ + 72/44 - ~o 1+v-----i-- 

4"1"0"~" ~ -  4+V ~. 4.1-~" 

(56) 

The second (messy) term in the curly bracket on the right hand side 

is very small in the high-energy-limit during the t~ 0 rapid velo- 

city change. This approximate form has the advantage that it interpo- 

lates smoothly between the two hyperbolas in the high-energy limit, 

with dx~/dt~ = 0 when t~ 0 as should be the case. 

It appears to be possible to use these insights into the high- 

energy behavior as the basis for s numerical exploration of the region 

between the point where the Anderson-yon Baeyer numerical scheme broke 
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down and the high energy limit. I hope that someone will take up the 

challenge and do this. It should perhaps be remarked that this unex- 

pected appearance of a minimum distance of closest approach appears to 

be limited to the half advanced half retarded problem; numerical cal- 

culations by Huschilt and Baylis 30 show no evidence of this for the 

case of purely retarded interactions with radiation damping. 

In closing I would like to acknowledge numerous discussions of these 

matter with Ed Kerner over the years. I would also like to thank the 

Conference organizers, F. Fayos, X. Fustero, J. Gomis, V. Iranzo, J. 

Llosa, J.A. Lobe, F. Marquis, A. Molina, A. Poch, J.M. Pens and J. 

Ports for their many hours of work which made this conference pos- 

sible. 
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SINGULAR LAGRANGIAN FORMALISM IN 

PARTICLE DYNAMICS, I . 

G. Longhi 

Istituto di Fisica Teorica dell'Universit~ 
Firenze 

Istituto Nazionale di Fisica Nucleare 
Sezione di Firenze 

The problemof singular Lagrangians was studied since the time 

of Weierstrass, in the context of the calculus of variations (the so- 

called homogeneous case, see for instance H. Rundl). In the more recent 

literature, one of the first physicist who studied the problem was 

perhaps Dirac 2 . 

Perhaps the first recongnised physical example where such a problem 

appears is that of the electromagnetic field, considered as a dynamical 

system with an infinite number of degrees of freedom, where the cano- 

nical momenta conjugated to the scalar potential vanish, so providing 

a first example of a set of canonical constraints. 

Another simple example is the Lagrangian of a scalar massive relati- 

vistic particle, written in a manfiest invariant form 3 , of which a 

great number of models are natural generalizations 4 . 

A number of papers could be quoted, in which this problem is in 

one or in another way discussed, anyway its Systematic study from 

the point of view of the physical applications and of the quantum 

theory is due again to Dirac, who developed it in the well known series 

of papers, and subsequently reorganized in the lessons at the Yeshiva 

University 5 . 

Set me show in a simple way how the interest in singular lagrangians 

arises in particle mechanics. The action for a single material point 

is x" 

(signature (+, ---) ), 

x~" 

da = ~ r -  (i) 

being the set of lagrangian coordinates which determines the 
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event in Minkowski space at which the point is observed. It is suppos- 

ed that the observation is made in an inertial reference frame, and 

x ° = t (c = l) is the time measured in this frame. In (1) x e and 

x u are given events and the integral is on the possible paths from 

x I to X I /  . 

A possible generalization to two interacting points is 6'7 

where rm= Xl~- x2~ , and the integral is extended to paths from 

(xl / , x~) to (x{ S , x~0 in the configuration space (Xl,X2) . 

From these examples we may say that we are interested in the study 

of actions of the form 

I 

=J,,.. L (x:, , ' -  (3) 
where T, is homogeneous of f i r s t  degree in the second argument, 

A problem of this kind could admit a geometrical interpretation, 

namely the problem to find geodesic in a space where the distance is 

defined by 

4 = t(~,~) (4) 

This would define a Finsler space I if some conditions on L were 

met: homogeneity of first degree in dx , positivity and non singular- 

ity of the matrix tensor ~ij defined as 

I @t L ~ 

wherea parameter • was introduced for convenience: 

(5) 

= - -  z ~  (6) 

Now in the example given in (1) g is indeed not singular, but 

in the case of the example given in (2) g is singular. This means 

that in general equation (4) doesn't define a Finsler space as usually 

defined (see especially the second reference quoted in I ). 

The choice of a parameter ~ (the paths on which the integral in 

equation (3) is performed are lines in total configuration space) is 

useful , but not strictly necessary. If this is done we may define a 

singularLagrangian L(x,x) : 
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, 1 '  

= / L (x, ~) -de (7) 
J= I 

where x/ xi{~f ) , • = i = xl~ xi (~") " L will be homogeneous 

of first degree in xi " Clearly we may change at will the parameter 

. The action doesn't depend on T ; it is a functional of xi('C) 

; and x. # and a function of x i i " 

The homogeneity of L implies that the canonical hamiltonian 

vanishes: 

N~= p,-~;-L - "~L -R~-L  -~0  (8) 

and by differentiating on xj : 

9ZL 
~: ._~ ~ = 0 (9) 

that is the hessian matrix has at least one eigenvector 
9~j 9 ~i 

corresponding to a null eigenvalue. This shows that a parameter inva- 

riant lagrangian is a particular case of a degenerate lagrangian, Where 

for a degenerate lagrangian it is understood a lagrangian such that 

9~; = 0 (zo) 
w 

It is worthwhile to observe that any lagrangian can be promoted 

to a singular lagrangian in a space of coordinates with one more dimen- 

sion (for a general statement see again Rund l). 

Degenerate lagrangians are discussed in detail for instance by 

Shanmugadhasan 8 and by Sudarshan and Mukunda 9 . 

The property (10) has a lot of deep consequences. First of all on 

the equations of motion 

! 9L 
= 

'~ i"  (n )  

which can be written 

~ L  ., ~L ~ L  ~ i  

by performing explicitly the derivative, and by taking into account 

the independence on E of L ; the r.h.s, of equations (12) is a 

function ~f x i and xi ' whereas the "accelerations" xi are present 
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only in the l.h.s., where they appear explicitly. Now, due to (10), 
~e 

only some of the x i can be calculated from (12). By liuearly combin- 

ing the n equations (12) we can find (at most) n-r relations invol- 

ving x i and xi only, where r is the rank of the Hessian matrix: 

, ( 1 3 )  

These are called lagrangian constraints, they put restrictions on the 

initial conditions. 

By differentiating in ~ these equations, and using again the 

equations of motion (12), we can eventually find other relations of 

the kind of the B~ , and so on. This procedure can be found in all 

details in references 8) and 9) • It turns out at the end that a certain 

number p of canonical constraints may appear 

.C'L(, ( h ,  ~ )  - 0 , f = 4 . . . ,  (l~) 

where the momenta Pi are defined in the usual way 

~L 

(but due to eq. (10) these cannot be inverted in terms of the xi )' 

of the "velocities" xi will remain undetermined. Among the and some 

constraints (14) are present the so called primary constraints, which 

follow simply from the definition of the Pi ' equation (15), by eli- 

minating between these equations the x i , these are 
@ 

identities in 

the space (xi, ~i) and are in number n-r . It will be in general 

p ~ n - r . 

The constraints ~f(p,x) = 0 can be classified in constraints 

of first and second class acoording to Dirac 5 . First class constraints 

are such that their Poisson brackets ( {xi' Pj~ = ~ ij ) with all 

the other constraints are zero as a consequence of the vanishing of 

the ~(p,x) (of all the ~# in general), or, as is usually referred 

to, they have weakly vanishing Poisson brackets with the other cons- 

traints. Otherwise they are second class constraints. 

Usually in particle mechanics second class constraints appear 

(for more than 1 particle of course), but in field theory the situat- 

ion can be different: the relativistic string model and the electro- 

magnetic field are two examples of models with an infinite number of 

first class constraints. 
In the case of particle mechanics the situation as seen from the 

lagrangian point of view seems to be very different from that of Droz- 
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Vincent l0 Todorov ll and Komar 12, based on a set of postulated first 

class constraints. Nevertheless, as we will see on a worked example, 

there is a sort of correspondence. 

The sequel of this lecture will be devoted to the analysis of the 

correspondence and to the advantages (and disadvantages) of the lagran- 

gian approach. 

To make things as clear as possible I find it convenient to discuss 

one simple and workable model, namely the two-body lagrangian model 

firstly proposed by Kamimura and Shimizu 6 and later discussed by Domi- 

nici et al 7 . This model has the action given by equation (2), where 

the potentials U i (i=l,2) are given by 

~4 = %(z = t-~ ~- "V'(r') (16) 

(we will consider the case of equal masses for simplicity). 

The parametric lagrangian is 

where xi~ = xP (~) are the lagrangian coordinates of the two dons- 
i 

tituents, i = 1,2 , which are supposed to specify the events of the 

two particles in a given inertial frame. 

By defining the conjugated momenta as 

~L  (18) 

where the minus sign is due to the metric signature, we get two primary 

2 4 -- 

~Z~ 

constraints 

J tPt- ,"A'- Vcr-) 
(19) 

and a secondary constraint : 

% = V'c,-,).(1,.,-) (2o) 

where 

~- ~," ~ ~ (21) 
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is the total momentum of the system. 

It is shown in ref. 7) that~ apart from a reparametrization invarian- 

ce in ~ , the constraints (19) and (20) determine a family of covariant 

word-lines, parametrized by twelve initial data specified at equal ~ ; 

this means that the initial data must be given with a specified time 

delay. 

On the other hand the Droz-Vincent-Todorov-Komar approach to the 

same problem lO'll'12 would start with two first class constraints, 

which are the following 

IC, : f,'_ 4- YC £ ") 1 
l 

(22) 

where 

(r'P)J 

which have the property 

• = o 

(23) 

(24) 

It is known that the model (22) doesn't specify a unique set of 

world-lines 12'13. In order to have that we need the addition of one 

gauge-fixing constraint 14 , which can as well be the constraint (20) 

(the constraint which fixes the parameter ~ should be eventually added 

in both models). K 1 and K 2 by themselves only specify a set of 

world-sheets. 

We must observe that here we are identifying the phase-space coor- 

dinates of the model (22) with these of the lagrangian model. This is 

necessary in order to do a comparison. In this respect we must not 

forget that the configuration space of the lagrangian model was iden- 

tified as the physical one. A different situation appears in the appro- 

ach of Droz-Vincent 15 where the identification of the physical coor- 

dinates is made a posteriori. 

We may verify explicitly that the constraints K 1 and K 2 do not 

specify world-lines, by the use of the explicit form of the Hamilton- 

Gacobi's function, which in the case of model (22) is known to exist, 

due to the property (24). 

I will give here only the result for the case of harmonic potential 

V(r 2) = cr 2 ; the calculation of the Hamilton-Jacobi's function 
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follows the classical procedure based on integrable systems, which will 

be discussed in the third lecture. 

The H-J function S = S(x,r) , defined by 

where the collective canonical coordinates p,x,q 

as: 

X= / (x4"~$ , r =  ~,- 'Z~ } 

(25) 

and r are defined 

(26) 

is given, for the model (22) with 

where 

V(r 2) = cr 2 , by 

J ~ _~ 4&-c r~ • + 
(27) 

z~ - e ~ l ~  r~, , ~:4,~,~ (28) 

The ~(~) being the polarization four vectors for a massive particle 

defined by Weinberg 16, and claculeted in the second paper of ref. 7). 

In eq. (27) k~ is such that 

k~= M t = 4~  ~ + ~  E~ (29) 
--p 

and k , e~ are six arbitrary constants of integration. 

It can be verified that S is solution (a complete integral of 

the two equations 

J (i=~) = o 
(3o) 

that is of equations K I = 0 , K2 = 0 expressed in terms of the col- 

lective coordinates (26), if these equations are thought as partial 

differential equations (Hamilton-Jacobi's equations) in S through 

Sx~ 9r~ 
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The solutions of the equations of motion can be ~ot from S as usual, 

by differentiating S with respect to the six constants @z and k , 

and by putting the results equal to new six constants. 

The solution so obtained is in a non parametric form, suitable for 

our discussion: 

--'~ _A~=_ k~. 
g k~ ko ~ 9 Ic~ 

where 

~_,-".~ k~._.,=-,:- ~ ( [ . ~ }  

and where 

~ k> k~ 
-~ I ~ ~(ko,~) ) (33) 

= (k.,- .)  

(35) 

The other set of solutions is 

The two sets of equations (32) and (36) should be solved in terms 

of say x and ~ , so giving two solutions of the form 

~ = 9~ C~0 ~o~ ~ e~ ) ~ (i=l,B,3) , (37) 
] 

which represent a B-dimensional surface, for any given set of the 12 

integration constants k i , ~ , in the configuration space. 

It can be verified that it doesn't happen that x I and x B are 

o and x~ separately; it fellows that this surface function of x 1 

is not the product of two curves or world-lines in the two Minkowski 

spaces M1 and M2 of the two particles, but when proSected on the 

two subspaces M1 and M2 it gives world-sheets. 

It is not easy to verify this fact explicitely, since it is not 

possible to solve in closed form the equations (32) and (36) in x 1 

and ~2 " But it would be sufficient to find a particular case where 

it happens for the effectiveness of the general statement. A particular 

case is the choice of the rest frame of p~, ~ = 0 . Since from the 

equations (32) and (36) and (31) we get p~ = constants = k ~ , we have 
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to choose 

(i=1,2) ; we get in x i , 

: -J  A 1 
M 

where 

k = 0 . Now the equations (52) and (36) are easily solved 

(58) 

and 

The conclusion is that this model doesn't give world-lines, at least 

until wemantain the identification of the configuration space with 

the physical space. 

Another possibility is left open, that is to look for new physical 

coordinates such that the surface defined by k i = 0 , corresponding 

to some choice of the integration constants, will appear to be the 

product of two curves in the new physical subspace M 1 and M 2 . This 

different interpretation would determine the Droz-Vincent physical 

positions 15 . 

Inasmuch we have chosen the physical coordinates as I did, the only 

way to have world-lines instead of world-sheets is to put a restrict- 

ion (gauge-fixing constraints) on the solutions (57). If we choose such 

a restriction to be 

= ( k . r )  = 0 ( ¢ o )  

that is the same constraint given as secondary constraint by the lagran- 

gian model, we get exactly the same solutions we had got by starting 

from the (19) plus (20) (with ~/i~ 0 ). That is, putting ~ = 0 in 

the equations (32) and (36) , we get 

k~ . .. ( ~ l )  
- M~+~). 

~;  = _  L ~o ~ . _ L  ~ ~ , , ~ . ~ C ~ - -  (~2 )  

together with 
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~ =  T ~  - I,,,.,, 
.~ .-@ 

These can be easily solved in r and x , giving 

-- k~ 
= 4 ÷ %- 

where ~i is the new constant: 

(~) 

The solution (~) depends on x o only, besides the twelve cons- 

tants ~i ' ki ' ~i ' ai ' and a time correlation appeared between 

r o and x ° , that is between t I and t 2 . This is exactly the 

solution which could be got from the lagrangian equations of motion, 

once we had eliminated the parameter ~ in terms of x ° . The situation 

is sketched in Fig. l, where the two world-sheets are indicated with 

~l and ~2 and the two world lines, determined with the condition 

~=0 , with ~l and ~2 " 
We could at this point reconstruct a 2-dimensional surface in the 

total configuration space as the product of ~l and ~2 " On this 

new surface the condtion ~-= (p.r) = 0 will hold only on the line 

, of which ~i and ~2 are the projections on M 1 and M 2 

(see Fig. 1). Any line on this surface will give the same world-lines 

1 and ~ 2 ' and since it is a 2-dimensional surface, points on 

it can be parametrized with two independent parameters ~l and ~2 ' 

which can be used to give an independent parametrization for the two 

world-lines. 

From this point of view we can make contact with the predictive 

point of view 17 . Indeed from the world-lines so obtained, which are 

now parametrized at will, we may look for forces which are defined to 

act at the same time in the chosen frame (and in any reference frame). 

A procedure which is possible in principle is the following: we may 

take the equations defining the two world-lines at the same t , by 

eliminating ll and ~2 in terms of t , and differentiate these 

twice in t . We can eliminate the integration constants in order to 

get the instantaneons forces. This is a classical argument in favor of 
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the existence of action-at-a-distance forces. 

Let me now summarize the situation as comes out from the analysis 

of this particular model. The Todorov-Eomar approach ll'12 , when applied 

to the two-body problem, gives the same results as the lagrangian model, 

if we select between all possible gauge-fixing constraints (those not 

dependent) the same constraint which arises from the lagrangian 

equations of motion. Alternatively we can take the general solution 

of the two equations K i = 0 (understood as Hamilton-Jacobi's equation), 

and look for new physical coordinates, in terms of which the 2-dimen- 

sional integral surface become product of world-lines. 

In any case it results that the lagrangian approach, starting from 

a set of physical coordinates, gives a complete dynamical scheme, in 

the sense that it specifies not only the world-lines, but also the 

time correlation which is a necessary element of the law of force. 

At this point we can try to list some of the advantages and some 

of the disadvantages of the lagrangian approach. 

One of the first advantages is that the requirements of relativis- 

tic invariance, and of other kind of invariance, is more easily carried 

out in the lagrangian approach. Even the requirement of separability 

(or cluster decomposition) seems to be more clearly accomplished. 

Moreover, an interaction with an external field is more easily introduc- 

ed in a lagrangian, where it can be more clear the way it can be 

coupled to the particle coordinates, in order to preserve some sym- 

metry. 

On the other hand it can be very difficult to find a lagrangian with 

a given set of primary and secondary constraints. Given the primary 

constraints it can be impossible, due to algebraic difficulties, to 

determine the corresponding lagrangian. And more, there will be ambigui- 

ties in the choice of a lagrangian, since the classification of a set 

of constraints in primary and secondary ones is arbitrary, and it is 

of small if not null physical meaning 5 . 

As an illustration of this situation let me again take the example 

of the two-body system. I know three lagrangians which give rise to 

the set of constraints (in the case of equal masses): 

9 z +  4 ~  z 4- "lJ.(,r t) -- 0 (~6) 

( p ~ )  = o (~7) 

Cef)  = 0 (~8) 
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The first in chronological order is that proposed by Kalb and Van 

Alstine 18 and by Takabayasi 19 

which gives the constraints (46) and (48) as primary and (47) as se- 

condary constraint. 

The second is that proposed by Kamimura and Shimizu 6 , equation (17), 

which gives the constraints (46) and (47) as primary and (48) as secon- 

dary constraint. 

Finally a lagrangian proposed by Gomis, Lobe and Pons 20 , given by 

h = -~ m 

gives all the constraints (46), (47) and (48) as primary constraints. 

In the next lecture we will see what the lagrangian approach can sug- 

gest on the N-body problem, where the main difficulty is the realizat- 

ion of the separability or cluster decomposition property. 

I L ; ) ¢  " 
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In this lecture I will give a short account of the various approaches 

to the N-body problem (N~ 2) , and I will discuss the problem posed 

by the requirement of separability (I will consider the spinless case 

only). 

The requirement of separability, or cluster decomposition property, 

is a well known difficulty encountered in the study of N-bodies in 

direct interaction. The necessity of requiring it was first raised on 

by Foldy I , and investigated by several authors 2 . 

Several model satisfying this requirement have been studied, start- 

ing from different points of view. I will not give here a complete 

review; recent reviews on this subject can be found in references 3)4) 

and 5) • 

Separability, or cluster decomposition property, will be here under- 

stood in the following meaning: when a system of N interacting par- 

ticles breaks into two or more dynamically independent clusters, be- 

cause of a finite range character of the interactions, or because there 

is a large space-like distance between them and the mutual interactions 

vanish in this limit, the set of constraints must as well break into 
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two or more dynamically independent clusters, because of a finite range 

character of the interactions, or because there is a large space-like 

distance between them and the mutual interactions vanish in this limit, 

the set of constraints must as well break into two or more correspond- 

ing subgroups, each subgroup describing the separate dynamics of eaeh 

Cluster of particles. 

An important consequence of the requirement of separability is the 

necessity of many-body forces in the direct interaction dynamics of 

many-bodies 2 . This was shown particularly in references 6), 7) and 

8) . 

I will give here a short account of some approach to the problem. 

A first group of models starts with the search of N first class 

constraints with the cluster decomposition property. This kind of ap- 

proach has been initiated by Todorov 3'9 , Komar lO and Droz-Vincent ll. 

Generally speaking, in this kind of approach it is neccessary to specify 

a set of gauge-fixing constraints (N-l) in order to have a definite 

dynamics (see lecture Ith. for a discussion of this point, and referen- 

ces quoted therein). 

A different approach with both Ith and IIth class constraints has 

been followed by Gomis et al. 12 , where a constraint of transversality 

of all the distances between the particles with respect to the total 

conserved momentum exists, which guarantees the space-like character 

of the interparticle distances. Due to these constraints the model is 

not separable according to our definition. Nevertheless the model is 

predictive 13 , and it should allow a reinterpretation in terms of 

instantaneous forces. From this point of view theproblem of separabi- 

lity disappears, since all that is required is that the world-lines 

will become straight-lines for large spaae-like distance, and t~is is 

what happens in the model. It exists however the difficulty to attribute 

a well defined rest mass to each separated free particle. 

Other models with a universal potential, which satisfy particular 

kinds of separability were proposed l$ and 5 • In this last work a model 

is proposed which is separable in the case of finite range forces. 

In this talk I want to discuss a different model, based on both Ith 

and IIth class constraints, which comes as a suggestion from a lagran- 

gian, which is a natural generalization of the lagrangian for two- 

bodies proposed in reference 15), 16). 

As we have said the Todorov-Komar approach postulates a set of N 

first class constraints. This set of constraints is supplemented by a 

set of N gauge constraints, which are necessary in order to eliminate 

the N temporal coordinates. 
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On the other hand a singular lagrangian should specify 2N-1 cons- 

traints, that is N mass constraints and the N-1 time correlations 

necessary in order to specify the dynamics (that is the times at which 

the forces must be calculated), but not the constraint which specify 

the parameter • (since the lagrangian itself must be homogeneous of 

the first degree in the xi ' that is parameter invariant). 

To study the N-body problem I will start again from the lagrangian 

formulation of the two-body problem 15)16) : 

(1) 

(signature : +,---) 

where for simplicity I have chosen equal masses and a unique form of 

the potential V ; r~= x#- x#. 

This parameter invariant lagrangian gives rise to two mass cons- 

traints (which are primary constraints, that is identities at the la- 

(2)  

grangian level) : 

J 
(Sazdjian 8 has shown that there exists a canonical transformation, 

by which we may get one and the same potential V = V12 = V21 , start- 

ing from two mass constraints with different potentials, V12 # V21 , 

but this last potential would depend in a complicated way on the momen- 

ta, or conversely if they depend on r 2 only, the potential V = V12 = 

V21 would depend on Pi )" Besides, the lagrangian equations of 

motion imply two lagrangian constraints, one of which is a canonical 

constraint 

(3) 

the other being a relation between two undetermined velocities. 

Thus this lagrsngian selects in a natural way a particular "dynami- 

cal" model between the class of models described by two mass constraints 

of the kind of Todorov-Komar; in this case, two first class constraints 

are easily recovered from (2), by substituting ~ (the transverse 

part to Pl + P2 of ~ ) in place of r in the potential V . This 

will give two other mass constraints equivalent to that given in eq. 

(2), taking into account eq. (3), when V I i 0 . 

All I have said require an important specification. That is what 
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is the physical space for the coordinates. It was tacitly assumed from 

the beginning that the space of the lagrangian coordinates is the phy- 

sical space, in a given inertial frame. Summarizing the situation re- 

garding the two-body problem, we see that the set of three second class 

constraints (from which we may always select one first class and two 

second class constraints) given by equation (2) and (3) is equivalent 

to twoTodorov-Komar mass constraints and a gauge-fixing constraint 

which selects the dynamics and which is separable. 

This is a general feature of the singular lagrangian approach. I 

will not discuss in more details all the problems concerning the gauge- 

fixing constraints and the world-line conditions, since this was discus- 

sed in detail by several authors, and it is the content of a talk by 

Lusanna at this congress. 

The study of the two-body problem suggest that we may try to gene- 

ralize the lagrangian (1) to N-bodies. Let me start with the three- 

body case. 

A possible generalization of (1) to the three-body case is the 

following 17 

where we will do the simplifying assumption of equal masses, with 

(5) 

where 

~-i I~ = X K -  " ; ( ~ {  (6) 

and where we have chosen a simple form of the potentials. We assume 

also 

The primary constraints that follow from (4) and (5) are 
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J'L~ - 
(8) 

If we analyse the equations of motion given by this lagrangian, we 

find that two lagrangian constraints must hold 

where 

,q4) = 
(9) 

By differentiating in ~ and using the equations of motion, and 

iterating this procedure, we never find some other constraint, except 

for new relations involving the derivatives of the ~i (that is new 

lagrangian constraints, but which do not imply new canonical constra- 

ints, since we cannot eliminate the ~i in terms of the momenta Pi )" 

The relations (9) determine the ratios of the ~ i ' and give no 

canonical secondary constraints at all. 

From the point of view of Dirac's theory of constraints this co- 

rresponds to one first class constraint and two second class constra- 

ints. So this model cannot be predictive 13 . We would have five cons- 

traints in a lagrangian approach: 1 first class and 4 second class, 

or, equivalently, in the Todorov-Komar approach, 3 first class cons- 

traints and 2 gauge-fixing conditions ~ -independent. 

There is an exception to this situation: when one interaction bet- 

ween two particles is absent, that is when say the potential V13 is 

absent in eq. (5) • The corresponding configuration of the system would 

be that of an open chain, instead of a triangle. This case was studied 

in detail by Kamimura 18 . 

But one property of the set (8) and (9) is interesting: it is the 

separability property, which is satisfied. We see by inspection that 

all possible clusters can be separated with the correct constraints, 

in a cyclic way. Each cluster will have the correct constraints for 

a two particle system or fo~ a free particle, where the two particle 

system is described by the two body lagrangian (1) . This stems from 

the structure of the lagrangian (~), which is in itself separable. 

This cluster decomposition property allows for possible configurat- 

ions with two particles separated by a time-like distance~ but be- 
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longing to the same cluster, like the chain configurations of the 

lagrangian model of reference 18 . This is not in contradiction with 

the definition of separability given in this lecture (see the appendix 

for the analysis of a particularly interesting case). 

As an example of a cluster decomposition assume that the third 

particle goes to an infinite space-like distance from the others, and 

assume also that V31 and V32 go to zero with their derivatives. 

We get from eq. (8) and (9) 

~ = @4 z-l~Iz + "~tz 

(lO) 

which is the set of constraints we expected for a two-body cluster 

(particles 1 and 2) and a free particle (particle 3). 

So the lagrangian (4) doesn't give a correct set of constraints, 

but gives a suggestion of how to achieve the cluster decomposition 

property. 

We may take advantage of that and postulate the following set of 

constraints for a separable model of three particles: 

I,~,3 

and 

3 

where i n  t h i s  l a s t  d e f i n i t i o n  t h e  s u b s c r i p t  i may even t ake  t h e  v a l u e  

3,  s i n c e  i n  t h i s  case eq.  (12 )  g i v e s  a c o n s t r a i n t  a l r e a d y  i m p l i e d  by 

B 1 and B 2 . 
From the point of view of the Todorov-Komar approach, the model 

(ll), (12) can be reinterpreted in terms of three first class (among 

themselves) constraints and two scalar gauge-fixing conditions. These 

first class constraints do necessarily exist, at least locally. This 

should be clear from a general theorem that states that it is always 

possible (at least locally) to find a canonical transformation to a 

new set of variables, such that part of them are equivalent to the 



constraints (in the sense that they locally define the same surface 

in the phase space); in this case three momenta, say, corresponding 

to the three first class constraints, and two coordinates, conjugated 

to two of these three momenta. 

Contrary to the two-body case, in the three or N-body case it is 

in general a very difficult task to find explicitly the equivalent set 

of first class and gauge-fixing constraints. We know that it exists 

and so that a model based on eq. (ll) and (12) has a counter-part in 

the Todorov-Komar approach. 

The model (ll) and (12) can be easily generalized to N-bodies if we 

use again a N-body lagrangian as a suggestion for the correct choice 

concerning separability. 

Starting from 

with 

L--F- ~ 
~'-- I 

~x,. = ~,~- .~.,~ V~ i c~,.~) 

(13) 

constraints for the N-body we may infer the following set of 2N-1 

problem: 

4o..N 

n~ ~-- ~- , , ,~ . , -  ~ c ~ , . ~ - >  ~ ~-J,~..., ~ (15) 

where B N i s  not  independent ,  but  i t  i s  imp l i ed  by B l , . . . ,  BN_ 1 . 
The set (15) and (16) has the cluster decomposition property, in 

the sense that it gives the correspondin~ set of constraints for each 

cluster when some coupling goes to zero. Even in the case of partial 

open chain configurations the correct set of constraints is reproduced. 

As an example I will write eq. (16) for N = ~ : 

l ! ! 
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J 
When for instance V~% = 0 , we get three constraints, of which only 

two are independent, and these are the same as that of equation (12) 

for the particle 1,2 and ~. 

One possible objection to this model is that the constraints ~?-. 

seem to contain only two-body forces, so they would not satisfy the 

separability requirement. But it must be observed that the A~ i are 

not the mass constraints of the Todorov-Komar approach, as we have 

stressed before. It is the aim of the present note to give some preli- 

minary result by showing a possible procedure to get from the ~. and 

B i the first class constraints of the Todorov-Komar approach, at 

least in a particular case, that of a symmetric harmonic potential 

model. I will not exhibit completely these constraints, due to the 

algebraic complexity of the model, but it will result quite clearly 

that these new constraints are no more depending on two-body potent- 

ials only. I hope that the following analysis will give an insight 

into the complexity of the three-body problem, by indicating a pos- 

sible explicit way to construct these first class constraints. 

At the end I will give the generalization to the N-body problem. 

As I have said I will consider the simplest case: that of three 

equal harmonic oscillators, so the set (ll) and (12) becomes: 

~4 - ~#- ~ + y C~-~)~ + ~ c~-~) ~ 

~I~- ~#- ~ + ~ C~,-~ ~ + ~ Cx,-x~z 

~= ~-~'+ y C~,-~.~ ~+ ~C~-~,) ~ 

'e,~ = Ci",+t'.-, ~,-~',.) - Ch.+t'~, "x,~-~) 
"B, = CF,,;+4, ~, x,-xO- C~,~+4,,, ~c3-~.,3 

(18) 

Let me perform the following linear canonical transformation 

~ =  'P,, "" ?~ ~ t'~, ;' 

(19) 

with the inverse 
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(2o) 

By taking the following linear combinations of the constraints: 

~.o = ~Z 4 +R=÷~Z 3 

(21) 

I get 

~ = 

' I~ k,~', - ~ )  -,- ~r2~ 
-~ P - ~"~" + ¢ I { q "  + 

• ~ CpkO + ~ (~k,~- k~ ~) + -~ ~ (r ,~-  ~ ,'.9 
~. ( p k ~ )  - 4 (k,, - ~" rO 

'd., = z(f,,--,,) + 3 { I q r O  - ~ ( k , r , . )  

"q'~ = ~ ( t " - )  - s (k, , ' , . )  - L~c,-U) 

(22) 

It can be verified, by calculating their Poisson algebra, that ~i 

and ¢i are IIth class constraints. We may take apart ~o , which 

contains the total mass, as an ingredient of the first class constraint, 

which could be evaluated following the prescription of Dirac. 

In the symmetric model (all coupling constants equal to ~ ) the 

set (22) has an important property, which can be discovered by defin- 

ing the new constraints: 

! (i = 1,2 ), (23) 

where 
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(24)  

and the new canonical relative coordinates 

( (25) 

We get 

(26) 

m 

and ~l' ~2 are obtained by ~l 

change of -~i with Qi : 

and ~ 2 respectively, by the inter- 

(27) 

Lastly ~o becomes 

• lJ,,/.,t =o 1 
{%,7,} =o 

(28) 

(29) 

This is the best simplification we may get by a linear canonical 

transformation, since in the Poisson algebra of the constraints only 

four independent quantities are present (with respect to six, which 

could be a priori present in a ~ x $ antisymmetric matrix). But 

this simplificationsis unfortunately possible in the symmetric case 

only. 
The form (26), (27) and (28) of the constraints allows to see the 
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way to get three first class constraints (among themselves), which are 

in involution (with respect to the Poisson brackets) each other. It 

is only necessary to perform the following canonical transformations 

(which by the way are all in one of the Dirac classes, so they will 

give at the quantum level equivalent systems): firstly we transform 

to longitudinal and transverse parts with respect to p : 

(~o) 
(~;~-_ _ 

(where the ~m are defined as in the Ith lecture), so we have 

(31) 

then we perform the phase transformation generated by the generating 

function 

that is +) 

+V/~_.5"- , -s (32) 

(53) 

so that we get 

1 {A, ~A,B3 ] ÷) eA*B B÷ {A,B~÷ + .., 
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~, =-'W~ t 
#~ = -  "I1'~ 

(34) 

In this way we put two of the constraints in form to two canonical 

coordinates. At this point we should evaluate the two conjugated 

variables ~l and ~2 from the equations 

I m 

%,=0 , ; ( ~ = 0  (35) 

and substitute the two constraints 

which have again zero Poisson bracket 

bles conjugated to I~ 1 and K2 " 

with the equivalent ones 

} 
f - -  ° , snd  s r e  v a r i a -  

(36) 

By putting ~i = 0 , ~i = fi(O'~i~ ' ~i~ ) in ~o we will 

get a new constraint go = ~ o(1~A,#~) which certainly commutes 

with ~l and ~2 ' so giving a set of three first class constraints 

(among themselves). 

Unfortunately we cannot solve analytically the two equations~i = O, 

which are two algebraic equations in ~i of the @th degree, so the 

program to get the complete canonical transformation cannot be perform- 

ed explicitly; nevertheless what we should do is now quite clear, and 

the difficulties are quite circumscribed. 

To complete the program we should perform a last canonical trans- 

formation (suggested to me by K. Kamimura): 

.~L.lf¢. 

(3?) 

which will bring all the four second class constraints ~i and %i 

into canonical variables. Fortunately, as suggested to me by K. Kamimu- 

ra, it is always possible to eliminate between the three equations 

(of the ~th degree in ~i ) 
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the two variables ~ 1 ' ~ 2 by using, for instance, the Bezout's 

elimination method, is obtaining a constraint which will not depend 

on ~i and where we may freely put T[ i = 0 , which will be third 

first class constraint beside ~q and ~2 (it will be an algebraic 

equation of very high degree in p2 ). 

I did not do this elimination explicitly, which corresponds to the 

calculation of a very big determinant (a 45 x 45 determinant for 

N = ~ ), but it is important in my opinion to realize that it is 

always possible by using linear methods only, and even in the N-body 

case. 

For the N-body case the generalization of equations (19) and (20) 

is the following 

N 
(39) 

and that of equations (23), (24) and (25) is 

~; = ~ - ~  , ~=~,~, ,~-~ (~o) 

where 

,~ = ~(N'OC~-~, A) [k ~ _ W~ r;] 
(~l) 

and 

(~2) 
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Finally the set of constraints ~i ) 

following 

('I>, ~e< -'i>D + 

i so defined is the 

i .  + ~,,! ( ,~ -~-~)~-=<~i  (~l~+, + . . .  + (~,~.,) + 

~ a i -  

+,,, + ~¢=---= ! ) 
Vl~l-~;+oc~l-(, +z)  ;' ,,; = , l , ~  . . . .  , I,l-.t 

+ , , ,  

(43) 

~'~ : / '~  with ~ ,'---" 'P~ (43') 

They enjoy the property 

; ~ , 7 ~  = o 
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In this appendix I want to discuss in a simple case the existence 

of solutions of the constraint equations (ll) and (12) . In particular 

the constraints (12) will give some restriction on the character of 

the distances between the particles, rij = x i - xj , which will depend 

on the potentials through V#. 1J " 
Let me consider a choice of the potentials Such that V..(r~.) = 

:0 : 8  
V(r~.) , with V/(r 2) ~ 0 for any value of the argument, and such 

that:OV(r2)-~O, V~(r2)--~O for r2---~- ~ . This means that for 

large space-like distances between two particles they become not inter- 

acting, while for a time-like distance they interact. 

The limitation V/. = Vt~O makes more easy the discussion of the 
:0 

implications of the constraints (12), 
2 

Another requirement on V is that Pi be always positive. This 

can be obtained by requiring that V be bound from above by a value 

V such that 2V ~ m 2 . 
o o 
With this choice we may find a limitation on the values of r~ 

:0 
due to equations (12). By some algebraic calculation it is possible 

to show that we have: 

• ÷ r , #  o 

(AI) 

The boundary of the region defined by eq. (A1) is not such that 

r~. is always ~ 0 , for any value of i and j Configurations 
1J 

with one distance time-like and two space-like are allowed (but not 

two time-like). 

The existence of such configurations does not contradict separabi- 

lity as defined at the beginning of this'lecture, indeed, when the 

two space-like distances become infinite, and one particle becomes 

free, the remaining cluster of two particles has the correct set of 

constraints, so the distance which originally was time-like is forced 

by the constraint to become space-like. 

Nothing can be said about the possible existence of bound states 

when the system is in such exceptional configurations, without solving 

explicitly the motion for a given potential. But this is a difficult 

task which will deserve further investigation. 
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1. Introduction 

In this note we will study a system described in a given phase 

space xi ' Pi ' i = 1,2,...,n , by s set of constraints both of 

first and second class: 

9. e (~', ~3 = 0 = 4, .... ~..~ ~ (1.1) 

K= ~, ..., zs ~,. (1.2) 

where Al~ are first class and /~ of second class (so the ~ are 

even in number). 

Moreover we assume that the canonical hemiltonian is identically 

zero, so the dynamics is all contained in the equations (1.1) and 

(1.2). 
Let us stress that any system can be studied within this scheme, 

since it is always possible to substitute any given lagrangian, not 

singular, with s new lagrangien which depends on one more coordinate 

(and velocity), homogeneous of first degree in the new velocities, so 

giving rise to a canonical hamiltonian identically zero (see for ins- 

tsnce H. Rund; see bibliographical note). 
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By hypothesis we will have: 

2. First Class Constraints 

Let us study at first the case when the ~ are absent. So our sys- 

tem will be described by the set (1.1). 

We want to show that in this case (1.1) can be considered as a set 

of partial differential equations of first order, in general non li- 

near, in one unknown function, S = S(x i) , the Hamilton-Jacobi funct- 

ion: 

(2.1) 

with 

- ~ (~) ( 2 . 2 )  

where the Pi = fi (x) identically satisfy equations (l.1). 

We will demonstrate this in three steps: 

i) One shows that the system of equations (2.1) is complete, as a 

consequence of the first class character of the ~ , and that 

it can always, at least locally, transformed into a set of equat- 

ions in involution (that is in a set of equations such that their 

1.h.s. have zero Poisson brackets each other, identically, and 

not only on the surface in phase space defined by the constraints). 

ii) Following the Jacobi's method of integration one can extend the set 

(when p < n , otherwise if p = n this step is unnecessary) to 

a set of n equations in involution, which will contain n- p 

arbitrary constants. It is shown that this is always possible. 

This set of equations is solved in the momenta: Pi = fi (xi' aa)" 

i = 1,,..,n ; a = p + 1,..., n , where a a are the arbitrary 

constants. This solution allows us to find the form dS = fi(x,a) 

dE l . 

iii) One shows that 
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so the 1-form dS is exact, and a function S = S(x,a) exists. 

i) Let us assume that the equations I~9 (xi,p i) = 0 are independent 

in the Pi ' this means that we may assume 

(If we assume that ~"~p are a set of independent functions, that is 

that no relation between the ~F exists, it follows that, apart from 

a possible canonical transformation which exchanges some of the x i 

in an equal number of Pi ' the rank of the matrix ~ / ~  is equal 

to p ) .  
From (2.4) it follows that we can solve the equations (I.i) in terms 

of, say p9 , 9= 1,...,p : 

• ~P = 4p {~c¢'~ ~ ; ~.= ~,.I..,I, ,..,vl.. ( 2 . 5 )  

The set of equations 

F~ (~<, p) = ~p - % Ix ¢, ~,,,) = o ( 2 . 6 )  

is locally equivalent to the set (1.1), in the sense that it defines 

locally the same surface in the phase space. 

Now, as a consequence of the first class character of the ~ , 

the ~ are in involution. Indeed 

does not depend on p~ , ~= 1,...,p : 

so in order to show that it is zero it is sufficient to show that it 

is so when Pt = ~r (X'Pa) " 

Now from (2.5) it follows identically in x i and Pa : 

x = o 

from which we get 

rap 
~x~  + ~-'-'~ ' b x ~  ~ 0 (2.8) 
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"~ + r'~Ip ""a~,~- ~ (9  (2.9) 

means that they are equal to zero when in the partial deri- where 

vatives of ~ we substitute ~E for 

The (2.8) and (2.9) can be rewritten: 

~' ~ (2.1o) 

9e~ ~ 9_gL ~-~-) C2.11) 

since the last equations for i = l,...,p become identities . 

From C2.10) and (2.11) it follows 

9~ 9~ 

where ~,G = ~,..., 

(2.12) 

Now the l.h.s, is weakly zero, so that if we put 

we will have 

• .-¢ ~ 0 

%f= 
~z@.) which is a linear homogeneous set of equations in "-z , with the deter- 

minant of the coefficients different from zero by hypothesis. So it 

follows 

~ " )  --" 0 r .v 

By iterating the argument we also get 

t'f- r, 
from which it follows that 

on the entire phase space an not only when p~ = St Cxi,pa) . 

The set of equations Cl.l) is complete in the sense used in the 

theory of system of partial differential equations. We have shown that 

it is locally equivalent to a set in involution. So the step (i) is 



demonstrated. 

ii) The set F 9 can be always extended to a set of n functions 

in involution (if p < n , otherwise this step is unnecessary): 

tx" .1 ,c)  , ;-4..., 

indeed, if we consider the equations in G 

= o , . . . .  ( 2 . 1 5 )  

they are a set of homogeneous partial differential equations of the 

first order in G , which are in involution. Indeed if we put 

(2.16) 

we have 

(2.17) 

as a consequence of the Jacobi's identity and of equation (2.13). 

From a theorem on homogeneous linear systems of partial different- 

ial equations, we know that the system (2.15) has in this case (comple- 

te system in jacobian form) n-p independent solutions in involution 

themselves besides the ~ , G a , a = p+l,...,n among O 

If we now choose a G a we have a new set of equations as (2.15), 

with G a added to the ~ , that is a system of p+l equations of 

the same kind. We can therefore iterate the procedure until we will 

have n functions in involution; at this point the procedure will 

stop, since a set of n equations of this kind has a constant as 

only solution. 

It is so demonstrated the possibility of extending (in infinite 

ways) the set ~ to a set of n functions in involution, 

Fi(xi,pi) , i = 1,...,n . 

Since adding to the F i some constant their involutory character 

is not altered, we may put 
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where c a are n-p arbitrary constants; we will write 

(2.18) 

~:~ (XC, ~¢) -: CL , ~.= 4,...;vl. (2 .19)  

with 

( .~=.0 f = 3 ,  . .~  (2 .20)  

Since the functions F. so determined are independent by construct- 
z 

ion, apart from a possible reordering of the canonical variables (by 

eventually performing a canonical transformation which interchanges 

some x i with some Pi ) ' we may assume 

It then follows that we may solve the equations 

~,  ~) = c~ 

i n  the form 

£-=4 .. . .  vL. (2 .22)  

By using the same arguments as in (i), we find that the new set 

(2 .23)  

is in involution: 

:~,, ~ ~ = 0 (2.24) 

iii) From the equation (2.24) it follows immediately 

%f. 
- z_=  = 0 (2 .25 )  

' ~  ~x~ 

so the 1-form 

,1.'~ = :~ { -~ ,c) . ,dx~ (2 .26 )  

is exact. 
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It follows that, in the hypothesis that the set of constraints ~p 

is of first class, it exists a function 

~ = ,~t'x,C) (2.27) 

such that the 

/" = ( 2 2 8 )  

are solutions of the equations (Hamilton-Gacobi's equations) 

@9')  = 0 (2.29) 

The function S is defined by (2.26) apart for an unessential ad- 

ditive constant. Neglecting this constant S will in general contain 

n-p arbitrary constants of integration. 

The constraints are contained implicitely in the set of equations 

= '1',- = o  (2.3o) 

indeed by eliminating the n-p constants c a from this set of equat- 

ions, we get again the original constraints (1.1). 

The solution S so obtained contains as many constans as the 

number of variables x i minus the number of constraints l~af . So 

it is a complete integral, and it is known from the theory of systems 

of partial differential equations of the first order, that from a com- 

plete integral it is possible to get all other integrals(the singular 

and the general integral) by means of differentiations and eliminat- 

ions only. So the Jacobi's method of integration gives a general kind 

of solution. 

When second class constraints are present, the set of equations 

= 0 , ~k = 0 cannot be interpreted as a set of Hamilton-Jacobi 

equations. 

We will see in Section 4 what can be said in this case. 

Before concluding this section, let us observe that the transfor- 

mation 

! (2.31) 
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is a canonical transformation, due to equations (2.24) or (2.25). It 

is a phase transformation, generated by the function -S(x,c) : 

where the operation ~ is defined by 

= * - t . -  + ,  , ,  

(2.32) 

3. Equations of motion 

The first class constraints ~f are not in involution in general 

(the r.h.s, of eq. (1.3) is not identically zero in general), so that 

the adjoint system (characteristic system) associated to them, written 

in parametric form, as in the following equation (3.2), is in general 

not integrable. We must substitute to the A~ the F~ : 

~(='~') = ~'r - ~'f'c=~,t',,. ) = o (3.1) 

The adjoint system associated to the set (3.1) is given by 

where the parameters B e are defined by these same equations. 

From the first set of equations we have for i = ¢ = 1,...,p : 

so we can choose 

Xe = @P (3.3) 

From the other equations we have 

~x ~" = - ~ x", ~, ¢~ cl x ~" 
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(3.~) 

so the "hamiltonians" which generate the evolution in the "times" 

are - ~r • 

From (3.2) it follows 

- | ~ {~' }I ~LSe 
It is easily verified that the system (3.2) is integrable 

r 
x 

(3.5) 

F~ z 9C~ 
1 .  

° 

_ ~ "  ,~ ~ 

- , ~ e r ~ e ~  

and so on. 

It even easily verified that, if the 

(3.2), they also satisfy the equations 

~V~= 0 . Indeed 

i 
x ' Pi satisfy the equations 

~p = 0 , and so the equations 

JF~ C~,~)= ~ wr,~} ~e~- o (3.6) 

so that, when for some value of the ~ it is ~ = 0 , they remain 

so for any other value of the parameters, that is for any value of 
i x ' Pi belonging to the same characteristic strip determined by 

eq. (3.2). 
Equation (3.6) can be called the stability condition for the ~ . 

The same holds for the I~ r . Indeed when ~'~p= 0 , it is 

see eq. (2.10) and (2.11). It follows 

l ~ I r  = ~ I ' , -  " 

1 

from which it follows the stability of the constraints ~p . 

We want now show that the solutions of the equations of motion 

(3.?) 

(3.8) 
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(3.2) (hamiIt0n equations of motion) are the same (apart from an iden- 

tification of the constants of integration)as that obtained from the 

Jacobi's method; that is, given a complete integral of the H-J equat- 

ions 

(3.9) 

the solutions are 

b ~ : ~ , ~ : / , ~ , . . . , , .  (3.ii) 

where b a are new a r b i t r a r y  cons tan ts ,  t oge the r  w i t h  the equat ions 
of the constraints (3.1). 

It is always possible to introduce p parameters ~'P in order to 

express the equations (3.10) and (3.11) in the following parametric 

form 

~ : ~ (c, 6, "c ) J (3.12) 

I will assume that the parameters "C ~ are essential, that is that 

If we differentiate the eq. (3.11) with respect to ~P , keeping 

b a and c a constant, we have 

since ~(x,c) depends on E~ only through the x i . On the other 

hand, if we differentiate eq. (3.1), where Pi : $~/~ , and where 

the dependence on c a is only through the function ~ , with respect 

to c a , we get 

9Ft. ~ x , c )  = o (3.15) 

Now the rank of the matrix II n-p (this fact stems from 

the completeness of the integral ~ ; it is indeed the precise mathe- 

matical definition of a complete integral), so between the solutions 
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of the two systems (5.1~) and (5.15) will hold a linear relation: 

~ ~ ~x~ (~.16) 

where in general ~ will depend on Ca. b a and ~ (see the Ap- 

pendix for a demostration of (5.16). We can at this point define a new 

set of parameters @~ such that 

and put (~.16) in the form 

which is the first set of the equations (~.2). 

To get the second set of equations (5.2) we may differentiate in 

r~ the equations (5.10) 

(3.18) 

and d i f f e r e n t i a t i n g  i n  x i the  equa t ions  ( 5 . 1 )  we get  

(3.19) 

or, using (5.16) : 

~x~  • ~ : r "  ~x, '~x~ 

~,, ~,,' 
-- ~X~ +C;'~T~ 

(3.20) 

= O (5.21) 

or, with (3.17) 

= _  - ' r  (3.22) 

which are the second set of eq. (5.2) . 

Now the equations (3.2) have solutions which will depend on 2(n-p) 

constants of integration, since by eliminating the parameters ~ we 

will get n-p total differential equations for dx i and n-p for 

dPi ; 2(n-p) is the number of constants that appear in the Jacobi's 

solution (3.10) and (3.11). 

This shows that the solutions (5.10) and (5.11) are the same as that 

obtained from the hamilton equations of motion (3.2). 
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4. Second Class Constraints 

Let us consider the set of constraints of both first and second 

class (1.1) and (1.2) 

1 X~ (~ .P)  = o , ~ = ~ , . . . ,  ~s 
(4.1) 

where the second class constraints 

Let us assume that 

~e are even in number. 

~-S _~ ~ (4.2) 

otherwise the procedure we will describe in the present Section is 

not valid. 

It is in general possible to substitute the set (4.1) (at least 

locally) with a new set such that p+s constraints are of first class 

among themselves, and the remaining s are all of second class (see 

for instance S. Shanmugadhasan, Journ. Math. Phys. 1~'677(1973), where 

the condition (4.2) is implied, and references quoted therein). So 

let me suppose that ~Lp and ~ with ~ = 1,...,s are this subset 

of first class constraints among themselves. Let me call the remaining 

%e with ~ = s+l,...,2s , ~k : 

For what we have said in Section 2, it will exists a function S = 

S(x,c) for the set of first class constraints ~, ~ (~ = 1,...,s) : 

with i = 1,...,n , and a = p+x+l,...,n . The n - (p+s) constants 

c a are arbitrary constants of integration. The additive constant 

is not essential and may be neglected. The S iS such that 

~ ~ ~ ~oC) ~ = ~x~ = ~×~ ( ¢ . 5 )  

and these functions of x i satisfy the equations 

~ e ( - X , p )  = o , ~, ~ , . . . ,  p 



177 

/~  P~,p) = o , .~:,t,...,~ (4.6) 

identically with respect to c a . 

Let me substitute the constraints ~p and %~ of (4.6) with the 
l 

equivalent set of constraints in involution 

'Fr t'.,,., P ) = g) , p.=~ . . . .  ,'~+~: ( 4 . 7 )  

The Hamilton's equations of motion (characteristic system) associa- 

ted to the ~ will be: 

'~ t',~ : ~ p~, % ] .~" ~ (4.8) 

where the p+s parameters ~ are defined by the (4.8) themselves. 

Due to the involutive character of the F~ the system (4.8) is inte- 

grable. 

It useful at this point to introduce the tensorial notation 

{'~'~ = ("X~ ...,"~'"~ ~ , . . . , ~ . )  (4.9) 
~-'-A, 2,... ,m. 

and the tensor [oE] 
lentil= -E o 

(4.10) 

where E is the unit matrix n x n . 

The equations (4.8) can now be written 

(4.11) 

where 

9~--~ (4.12) 

If we now require that the solutions of the equations (4.11) must sa- 

tisfy the further conditions (constraints (4.5)) : 

@, l~ ) = 0 (4.13) 
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we may think at this condition as a restriction on the parameters ~. 

This means that it must hold 

(¢.1¢) 

or, for the 

Let us put 

d@ ~ : 

• 9 ~  "L 
?$" .,~e = o (¢.1~) 

r. 
-- (4 .16 )  

which can also be written (see eq. (4.11)) 

The ~ will be restricted by 

(4.17) 

"B. ~ ~)" - 0 (4.18) 

This is a set of total differential equations for the ~m, which 

can be thought as the adjoint system associated to the linear homoge- 

neous system of equations in the unknown function u = u(e) : 

~e 9~ _ 0 (4.19) 

where 

~.~.~ = 0 (4.20) 

A solution of the set of equations (4.18) is thus 

~-4 .... ,~, (4.21) 

where the ~ are new p independent parameters. 

In other words, the conditions (4.15) on the solutions of the Ha- 

milton's equations of motion reduce the number of independent parame- 

ters from p+s to p . 

Let me observe that the system (~oll) plus (4.15) is not an inte- 

grable system of the mixed kind (see for instance L.P. Eisenhart, 

"Continuous Groups of Transformations", pag. 4, or T. Levi-Civita, 
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"The absolute Differential Calculus", pag. 29 and foll;). Indeed we 

know that the original set of constraints is not an integrable system 

of equations in some function S , such that 9g~ = Pi " Neverthe- 

less we can consider the conditions OK= 0 as supplementary condit- 

ions on the solutions of the integrable set of equations ~p = 0 . 

It remains to calculate the coefficients ~yr . The coefficients 

B k defined in (~.17) constitute a rectangular matrix s ~ (p+s) . 
" 

This matrix has certainly a rank = s , since we know that the second 

class constraints ~Q , C= 1,...,2s , have the property that 

by relabeling, if necessary, the constraints ~, I may assume that 

the second class constraints of the set ~,~ are 

while the ~y (9= l,...,p) are first class. 

Now the matrix of the Poisson brackets of the second class constra- 

ints can be written 

I A H= .~  0 (¢.23) 

where 

"B '~,. : ~, e ,  , F,,,,,~ t 
(¢.2¢) 

The inverse of M (which will be useful in the following) is 

i~ " I  o g' 1 ~-' ~-'A ~" 
(~.25) 

and 
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It follows that det M ~ 0 if and only if det B ~ 0 . So the 

rank of the matrix II BkpU is equal to s . 

Using this fact, the solution of the linear homogeneous system 

(4.20) can be found using the general solution given in the Appendix, 

with the choice C[f = ~; . 

It is 

(4.27) 

where ~= 1 , ..., p+s ; 9 = l,...,p : k,h = 1,...,s ; and substi- 

tuting in equation (~.ll) we get 

(4.28) 

Let me observe that another choice of the solution (4.27), with 

CCp ~ ~; , will have the meaning of a change in the parameters, 

from w9 to some new ~ such that 

C °" .~,~e - c ~  (r (4 .29)  

with 

9~ ~ 
~wP 

This means that the choice C.~ = ~; 

the parameters in eq. (4.28) . 

definition {Fp+k, Ff} = 0 , the equation (~.28) can Since by 

also be written in the form 

(4.3o) 

imply a determined choice of 

where in the r.h.s, we have added quantities which are zero. 

We recongnise in (4.31) the structure of the Dirca brackets, with 

respect to the second class constraints Fp+k and @ k ' k=l, ..... ,s 

In writing (4.31)use was made of eq. (4.25) . 

Finally we may write 
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The i n t e g r a b i l i t y  condi t ions f o r  t h i s  set of equations (Hamil ton- 

Dirac equations) can be easily verified by taking advantage of the 

properties of the Dirac's brackets. We know that the Dirac brackets 

verify both the Jacobi identity and the relation 

, ~ $~ " 

This is enough to verify the integrability conditions, since 

but the l a s t  term in  the r . h . s ,  i s  zero s ince, using eq. (~.28) 

which vanishes due to the i nvolutor~ character of the F~. 

No particular hypothesis are necessary for the constraints ~k ' 

except that they must be in number less than the ~ , or better 

that p # 0 , otherwise the only solution of (~.18) would be d~ ~-- 0 ° 

Let me observe that the equations of motion (4.32) are weakly equal 

to the Hamilton equations (with the Poisson brackets in the place of 

the Dirac brackets). The result (~.32) is here meant to show that the 

procedure here developed is equivalent to that of Dirac. See also the 

following Section where the method is applied to the two-body problem. 

5. Application of the Hamilton-Jacobi Method: the Two-Bod~ Problem 

Let me consider the Komar's constraints for the two-body system, 

where for simplicity we assume equal masses (see I th lecture), 

= p ' + ~ = -  ~ +  ~ r  ~ 

where 

(5.1) 

~ - .  r-r '-  (r'l@P~ (5 .2 )  
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and 

I = (h- 

The constraints F 1 and F 2 

(5.3) 

are in involution, that is .(#) 

J~, F~ = o (~.~) 

We have in this example: 

Set us put 

7 : {~.r) 

n=8, p --- 2 . 

, (~.- ~,~_,~) "~ 

where 

o p~ : ~ 

The inverse relations are 

r. = _r~,l.il, )S~  4 ~--- 

The Poisson brackets of the new variables are 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(#) Signature: +,--- ; {A, B~ ~A ~B ~B_ ~_~ 
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We may Verify that the following objects are in involution with 

F 1 and F 2 and between themselves: 

(5.9) 

~ - -  ~,,. - k,. 

Fy-- ~,, - k ,  

(5.9") 

where ~, 

The s e t  ( 5 .Z ) ,  (5 .9)  ancl ( 5 .9" ) ,  when we p u t  

..,8) , is equivalent to 

- ) = o  

+ c  V. - E ~  = o ¢=~,Z,3 ~ b  I 

~i (i = 1,2,3) are arbitrary constants. 

F i = 0 (± = 1,2,.. 

(5.1o) 

but where now it is 

(5.11) 

and 

where (j) 

(5.12) 

(#) We have selected the positive value of k o for simplicity. 
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If we solve the constraints (5JlO) 

and 

get 

in p ~ and q~ (or in ~ 

) , by selecting the positive values of the square roots, we 

p,  : 

(5.1~) 

or, more explicity 

(5.1~) 

where now all is expressed in terms of the six arbitrary constants 

~i and k i . 
If in (5.1~) we eliminate these six constants, we recover the ori- 

ginal constraints F 1 and F 2 . 

Equations (5.1~) give the set (3.1) in this example. From equation 

(5.14) we may calculate the Hamilton-Jacobi function S : 

).'=1 

(since from equations (5.1~) we have ~-- -~f~k)Ve~-c r~ 

We may express ~ in terms of .~r and ~ : 

dr~ = -  e~,,e (k) d c~, + N___ ~ 

from which ( kP6A~[k~ O, ~ = 1,2,? ) 

so that dS can be written 

(5.15) 

(5.1~) 

(5o17) 
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o r  

• ,, ~--~ [1"7 r'~ V ~ - c  _r-:~ + 

] 
(5.18) 

where S must be thought a function of x P and r ~, and of the 

six constants ~¢ , ~ . 

The solutions of the equations of motion can be got from S by 

putting equal to six new constants the derivatives of S with respect 

to ~ i and k i : 

~'7 - - ~  -,, g~- (~.19) 

where 

and 

~_r:~ A IEw_r,: _ ~,.,x~ (i~,. F)] - 

k. [ ko ,'~1 

~_~= ~ = _  ~ °  

(5.20) 

~- L o.~ . ~  ~" r~ (5.21) 

Equations (5.19) and (5.21) will give x i and r i in terms of 

x o and r o , and of the 12 constants (the correct number for the 

initial conditions for two particles) ~i ' ki and h i , a i . 

Following the considerations of Section ~, we may put the restrict- 

ion (p,r) = 0 or ~= 0 on the solutions (5.19) and (5.21). 

In this case we have the following simplication 

zx. l fg ~ 
~ = - .k ;  ~ ~ ~ ~a  :faVor- (5.22) 

ko (m +~.) M 
where the last term in the r.h.s, of (5.23) is a constant 

,' ~(Wo+M) 
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We may redefine h. and write 
1 

ko 

_ ,  ~- ~ ,~+ t (5.2~) 

from which finally we get the final form of the solutions 

ko 

F o r  t he  momenta we have 

(5.25) 

(5.26) 

It can be verified that these are the solutions which we could 

have got from the lagrangian equation s of motion, after having elimi- 

nated the parameter ~ in terms of x ° . 
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Appendix 

In order to demonstrate the equation (5.16), we will study the so- 

lutions of the system (5.14). Let us put 

J" ,~gx~ [~---A, ~- ; r = ~ , . . . l , ~ )  (A.1) ~-~_ _- , ..., 

~ ;  = ~ .  , ~a = e÷A, . . . ,  , )  (A .2 )  

The rank of the matrix M = ~ M~il~ is by hypothesis n-p . 

Let us use the following convention: a prime to some index will 

mean that it varies on the complementary set; for instance if ~ = 1,.. 

..,p ; ~ p+l,...,n . 

The system (5.15) can now be written 

B.~ %j, =o (f=4---,l" ; J" = p~,.-.,~ : ~'=~,-..,~) (A.3) 

Without loss of generality we may suppose that 

I fp N..,! ~o 

so we can solve the system (A.5) in the 

which are left undetermined. 

The solution is 

(A.~-) 

~ as functions of the ~; 

=_ . . ,  m'r'~. ~;.. 

which can be written 

(A.5) 

f 
(A.6) 

since for i = ~ we have an identity. 

In order to express the fact that the ~ remain arbitrary, let 

us put them equal to the elements of an arbitrary matrix C.~ : 

• ~ (,-I.<-, M~.~-) • ~- 
%:-(~_- ~, c. r 

which for any C.; is solution of the system (A.5) . 

(A.7) 
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If we have two solutions which differ for the choice of the C~.~ : 

~ (~ ~;', I , - , ) , '  - '  ~ l 
- - . . . , . M , . ) q . ,  

(A.8) 

it exists a linear relation between ~ and ~ if one of the two 

matrices C1,C 2 is not singular, say C 1 . 

Indeed if we put 

we get from (A.8) 

(A.9) 

(A.IO) 
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I. CLASSICAL THEORY 

1. Introduction 

Within the last few years very considerable progress has been made 

in the development of a theory of interacting point particles where 

the interaction is not described by an intermediate field but is direct. 

These lecture will summarize the present state of the art from the 

"Hamiltonian" point of view. Other formulations which are ex~ected to 

be equivalent to this view (at least in a certain sense) include the 

Lagrangian formulation and the predictive dynamics. But neither of 

these seem to have been developed as far as the (generalized) Hamilto- 

nian formulation. They are described by other contributors to this 

conference. 

The five words of the title of my lectures are meant in the follow- 

ing sense. 

Dynamics: This theory is not meant to be a fundamental theory of 

interactions and is not intended as an alternative to quantum field ~ 

theory. Rather, it is a dynamics in the sense that it describes the 

motion of particles under given "forces" which are to a large extent 

arbitrary, although important restrictions on them will be seen to 

emerge from the requirements of invsriance, consistency, cluster pro- 

petty, etc. 

Particle: This is a direct interaction theory between particles. 

Fields as mediators of interactions are not considered although they 

are not excluded in an implicit sense: if the fields of a field theore- 

tic interaction are eliminated in favor of the particles an example of 

the direct interaction theory may result. Also, direct interaction 

theory may be an approximation to s field theory. This is of special 

importance for phenomenological applications. 

Canonical: The starting point of the theory includes a canonical 

algebra (a symplectic space). But it is net assumed that these canoni- 
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cal variables have direct physical meaning. In general, physical varia- 

bles emerge at a later stage of the theory. 

Let the N particles be labeled by a,b,.., and the components of 

the canonical variables q and p by k, I , ... then the canonical 

algebra is in classical physics 

(1) 

i.e. a Poisson bracket algebra. In quantum physics it is a commutator 

algebra, 

More generally, one envisions a 2Nd dimensional symplectic space r 

where d i s  the  number of  independent  components o f  q ( o r  p ) . 

Relativistic: The notion of special relativity implies two concepts 

of relevance here, Poincar~ invariance and the irreducible representa- 

tions associated with free particles. Poincar~ invariance 

requires that the functional form of the generators of the Poincarg 

transformations PP(q,p) and M ~(q,p) implies the Poincar~ algebra 

as a consequence of the q, p algebra. It also requires the physical 

description (for example the classical world lines of the interacting 

particles) to be covariant under Poincar~ transformations. We shall 

here develop a manifestly covariant theory although manifest covarianee 

is not necessary for a relativistic theory. Specifically, we have, using 

, ~ to take on the values 0,1,2,3, 

The irreducible representations associated with a unique mass m ~ o 

and spin s ~ o , ~,~ is characterized by the values of the two 

Casimir invariants 

~ p  = -  ~"  (4) 

and 

where 

(5) 

el" t,, (6) 
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is the Pauli-Lubanski vector and S~' is the dual to the spin tensor 

S~ ~ . Equation (4) is the mass shell equation of a free particle and 

will be a basic starting point of the theory. 

Constraints:A covariant formulation does not use the minimum number 

-* and Pa for particle a co~- of variables (the six components of q a 

responding to the six degrees of freedom of a spinless particle) but 

uses four vectors q~ and Pa~ thus adding two variables, q~ and 

Pao for each particle. These additional 2N variables must eventual- 

ly be eliminated. Suitable constraints are necessary for this purpose 

so that one finds that the need for constraints goes hand in hand with 

a manifestly covariant formulation. 

Hamiltonian dynamics with constraints was developed by Dirac, Berg- 

mann, Komar, Sudarshan~ Mukunda, and others. Some references are pro- 

vided at the end of these lectures. 

2. Constraint ~heory 

In the time available here it would not be possible to give even 

an introduction into constraint theor~,~.However,-- since some basic no- 

tions will be needed in the following presentation I shall give here 

a few definitions. 

Constraints are functions of the q and p which vanish in some 

part of the phase space ~ . They cannot vanish everywhere in F be- 

cause that would contradict the canonical algebra which required all 

q,p to be independent from one another. The symbol ~ (weak equality) 

is used to indicate validity of an equation in only part of F . Con- 

straints thus have the form 

First class constraints are characterized by the fact that they com- 

mute with one another (i.e. have vanishing Poisson brackets). Since 

each first class constraint permits the elimination of 2 variables, 

one needs only C=N such constraints to eliminate 2N variables. 

Second class constraints do not commute with one another and in 

fact must satisfy the following condition: 2 S second class constraints 

(they always occur in even numbers) define a 2Sx2S matrix D , 

with the property 

I'bl-- 0 (9) 
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Every set of constraints can be divided into first and second class 

constraints. For the elimination of 2N variables one needs F+2S 

constraints such that F+S = N . 

28 second class constraints reduce the 8N dimensional phase space 

~(8N) to a 8N-2S dimensional one, H I . On [~i the variable q,p 

satisfy an algebra with a different bracket, the Dirac Bracket. That 

bracket, [ • , . }~ , is defined by 

{ -IA,e.] (lO) 

where the summation convention is assumed. 

Given any variable A one can associate to it a variable 

that 

A @ such 

A~A (ll) 

which commutes (i.e. has vanishing Poisson bracket) with all the 2S 

second class constraints 

[ A*, d,.,] = 0 (,.. = w, 2 . . . .  , ~'~) (12) 

These "star variables" are obtained as follows ~. 

A ~'- A- {A,(],.,] (D-'),,,,~C,,. (13) 

The q~ and p~ span a symplectic space isomorphic to ~; . Their Pois- 

son brackets on ~t are just the Dirac brackets. In fact, 

(14) 

If S=N , i.e. if all constraints are second class then the q@ 

and p @ are the physical variables since they obey the constraints. 

For example, the physical position x~= q?~ qa ~ is equal to the 

position on the subspace ~I . That subspace is (in that case of S=N) 

the 6N dimensional physical phase space which we shall denote by ~@ 

3. The Geometric Structure 

The theory in the form in which we shall present it here developed 

out of the independent proposals by Arens5, Todorov6,and Komar< as well 

as a number of others (see the references for a few representative 

papers). 
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Starting with the free mass shells (~) of N particles, 

we see'that these are N first class constraints, i.e. the correct 

number for the elimination of 2N variables. Interaction is introdu- 

ced by making the mass depend on the variables. More precisely, (15) 

is replaced by 

where ~a vanishes in the free particle limit and is in general a 

function of all the qb and Pb (b=l,2,...,N) . It is called the 

interaction function. 

One now assumes that the first class character of (15) is preserved 

in (16), 

Sa~djianhas given arguments for the necessity of (17) which we shall 

not repeat here. 

The N equations (16) restrict p(8N) to a subspace, ~(7N), 

the general mass shell hypersufsce. Consider any point ~ = (ql,q2,.. 

.. qN,Pl , .... pN ) 6~ . The quantity K a can be used as a generator 

of a trajectory through ~ : 

The parameter along that trajectory is here denoted by ~a " The in- 

tegrability condition of the equations (18) is just the first class 

condition (17). It ensures that the N trajectories generated by the 

N K a all lie in ~ ; they span an N-dimensional surface ~(N) . 

Since every ye~ lies on some (unique) surface Z, it follows that 

(18) generated a foliation of ~ , 

Or, one can define a quotient space 9 ~ by 

(19) 

(20) 

~ is the 6N dimensional phase space of physical points: all points 

on a given leaf ~-'are physically equivalent since they differ only 
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by weakly vanishing terms. The physical motion must be a canonical 

transformation of ~ into itself, a canonical automorphism. 

Z'(N) 

Fig. 1. The general mass shell hypersurface ~(7N) as a 
foliation ~-(N)@ ~ (6N) . Those trajectories from 

~ on~- are drawn that are generated by K a and 
b K b . 

If one chooses a set of functions 

and constructs the linear combination 

= ( 2 2 )  

one obtains a generator that also generates a trajectory from ~ onE. 

For every set ~I a different trajectory will result. These trajec- 

tories on ~- are called gauge motion since they are clearly not phy- 

sical motions and are generated by constraints. The points on a gauge 

motion trajectory all correspond to the same point on ~ , since all 

points of a given ~ correspond to the same point on ~ . 

4. Fixations 

The geometrical picture leads to the physical phase space ~ as a 

quotient space~ equation (20). But it does not provide equations of 

motion. For that purpose some "time parametrization" needs to be in- 

troduced which permits an explicit description of the evolution of the 

system 3'9. In Minkowski space such a parametrization amounts to a 

specification of a family of three-dimensional hypersurfaces (usually 

taken to be spacelike) labelled by some invariant time parameter ~ . 
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For the N particle system such a time parametrization amounts 

to a specification of the variables qa ° in terms of the other varia- 

bles in phase space. Thus, one needs N equations (necessarily weak 

ones) involving the N qa ° . Since these are to fix the hypersurfaces 

whichcharacterize successive states of the system they are called 

"fixations", 

%~CI, p,=) ~o  (~=4,2,..., .) (23) 

This f a m i l y  of  sur faces i s  l a b e l l e d  by the mono ton i ca l l y  i n c reas ing  

parameter ~ , and i s  r e q u i r e d  to  i n t e r s e c t  the f a m i l y  of  sur faces 

(16 ) ,  i . e .  one requ i r es  

(2¢) 

(25) 

One can think of (23) as providing a functional dependence of the qa ° 

on ~ and on the other variables. 

From the point of view of constraint theory the two sets of equa- 

tions (16) and (23) form a set of 2N second class constraints, equa- 

tion (24) corresponding to (9). Such a set has the property that the 

coefficient functions aJ~ of (22) areuniquely determined by them 

if one requires these constraints to be conserved under the evolution 

generator H . 

Because of (17) the K a are trivially conserved, 

{ ~ ,  ~ ~ 0 (26) 

For the i~ one has, because of the explicit ~ dependence 

. . . . .  + { # ,  = o  9 ~  

or 

(summation convention) 

(27) 

(28) 

Thus, the fixations (23) fix the evolution generator uniquely to be 

(29) 
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This generator yields a unique trajectory 

: ~t, ~ ~ 4¥,~,,'J. (~-'),,~ ~ (30) 

Since ~ has the 2N components qa ~ ~ Pb~ ' this equation is just a 

compact form of Hamilton's equations of motion for our system. 

From (18) we learn that the N times ~a are related to ~ by 

=1-"~' = ~ "  = - ' ~ i :  ( 3 1 )  

This equation relates the "many-time" formulation to the "single-time" 

formulation of dynamics. That relation is unique for any choice of the 

fixations ~a ' (23) . 

However, it is at this point difficult to understand why (30) should 

have anything to do with the physical motion of the particles since 

(18) is clearly a gauge motion and any linear combinations of gauge 

motions is also a gauge motion: the point on ~ does not move because 

the trajectory remains in a given leaf. 

5. Physical Variables 12 

The physical variables ~ ~ ~ ~ ~ ar " " : ~l ,"'~, ~p,"" ~ e bY deflnltlon 

variables that equal ~ on ~ and that commute (have vanishing Pois- 

son brackets) on ~ with all the constraints. When all constraints 

are second class these are just the star variables constructed in (13). 

The 2N constraints (7) consist in the present case of the N con- 

straints(16) and the N fixations (23). The matrix D has the form 

(32) 
-~ ! o / 

where 

and its inverse is 

e,,~- 4t,<, 1~} c33) 

/ 
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Substitution into (13) then leads to the physical variables 

= - (-A-),~% 

-f1", [ + 

One verifies easily that they satisfy 

The equations of motion of these variables are therefore 

(36) 

(37) 

since they depend on ~ explicitly via the %~ . But [ and the K a 

are not explicit functions of ~ so that (37) applied to (35) gives 

(38) 

These then are the equations of motion of the physical variables. And 

we now discover that these are just the Hamiltonian equations (30) on 

the physical subspace. 

One concludes that the gauge motion associated with a particular 

set of fixations is just the physical motion on ~ . For a fixed 

value of ~ the ~ span a physical space ~* which is a different 

representation of the quotient space ~ for different ~ . 

We now turn to a brief discussion of the center-of-momentum varia- 

bles (CM variables!~.This is a choice of variables often advocated in 

the literature. It differs significantly from the above individual 

particle variables (IP variables). Instead of 8N IP variables one has 

8N + 8 CM variables Q~,P~0~which must satisfy an algebra which 

is a realization of the Poincar~ algebra when 

The most convenient choice is the covariant canonical realization 

(¢o) 

with all other Poisson brackets vanishing. Other realizations imply 

relations between the CM variables so that not all 8N + 8 of them 

are independent dynamical variables. (See the appendix of my paper 
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where one chooses for Q the Newton-Wigner position variables. 

The meaning of the CM variables can be deduced from (39): Q and 

P are the CM position and momentum of the system. ~a and TC a 

are internal (relative) positions and momenta. (39) is the separation 

of the generalized angular momentum into one of the system as a whole 

and one which is the sum of the individual internal particle angular 

momenta. Particle spin is here ignored. 

In terms of these variables there is a certain arbitrariness in 

choosing constraints since the mass shell is no longer accessible. A 

much more serious problem, however, is the fact that these variables 

lead to difficulties when N particle systems (N >2) are considered 

in which the particles interact by means of separable interactions. It 

does not seem possible to satisfy the cluster decomposition property 

in terms of the CM variables. We shall return to this property later. 

On the other hand, the CM variables are very satisfactory and intui- 

tively desirable for bound state problems of two-body systems. Also 

N-body systems can be treated this way if no scattering states are pos- 

sible (nonseparable interactions). The relation between the CM varia- 

bles and the IP variables has been studied in several papers (see 

e.g.M.J. King and F. Rohrlich). 

6. Many-body Forces 

So far no attention was paid to the first class condition (17) of 

the constraints. In view of the form of the K a , (16), this is really 

a condition on the interaction functions ~ : only those interaction 

functions are permitted for which (17) holds. But what are these funct- 

ions? 

For N=2 the answer to this questions is very simple. Since one 

can here always choose ~ =~=~ the equation 

(el) 

leads to ~4 9~ @4 - - o 

of 4' i.e. ~_~--~ one finds 

@~_ 

This result states that the two-body interaction function can depend 

or, because of translation invariance 
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on ql and q2 only through 

where P~ is the projection orthogonal to the total momentum P~, 

(.4~) 

Here S #  is the Minkowski metric and ~ is the unit vector 

P ~ / ~  . (We use trace ~ = + 2 ) . The functions ~ are there- 

forescalar functions constructed from the three fourvectors ~ qlz' PC 

For N=3 the problem is already much more difficult. One must solve 

the three equations 

ca b cyclic 123) 

for the three functions ~ , with ~ = ~&~ . And now one finds that 
ll 

there is no nontrivial solution to this problem! 

Therefore, it is necessary to extend the type of interaction funct- 

ions considered. One can no longer limit oneself to two-body interact- 

ions. For N=3 three-body interactions must be present for any non- 

trivial system. 

This is a feature characteristic to the formalism based on generali- 

zed mass shells as first class constraints. 

An explicit solution for such three-body forces was obtained by 

H. Sazdjia#~He also found a solution for the N-body system which 

requires n-body forces with n = 2,3,~,... N . Earlier work on this 
S v 13 problem was done by S.N. okolo . 

Since Dr. Sazdjian will speak on his work at this conference no 

further discussion of it is necessary here. 

The necessity of many-body forces in direct interaction dynamics 

should not be surprising. As early as 1939 Primakoff and Holstein 14 

showed that when retarded interactions of fields are replaced by di- 

rect interactions many-body forces arise. It is the price one pays for 

restricting oneself to direct interactions. 

7. The Cluster Decomposition ll 

Any particle dynamics which is to be physically meaningful must 

satisfy the cluster property when separable interactions are involved. 

A particle is subject to separable forces if these forces cease in 
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the limit as that particle is removed to infinite spacelike distance 

relative to all the other particles. Such forces in general admit bound 

states as well as scattering states of the system. 

If the particles of an N particle system interact with one another 

by separable forces the interaction functions ~L must vanish asympto- 

tically as the relative spacelike distances approach infinity. If the 

system separates into two clusters of N' and N u particles, N I + 

N ~ = N , the cluster decomposition property requires that in the 

limit 

(1) the dynamics ofeach cluster is independent of the dynamics of 

the other cluster, 

(2) the dynamics of each cluster is independent of its history, 

(5) the cluster decomposition is Poincar~ invariant. 

For ~= ~ ~(~) separability requires, as particle a sepa- 

rates, 

Jr~ #~ = 0 (~6a) 

J~4 ~ independent of a . (~6b) 

The phase space r separates into two non-intersecting spaces F'and 

F" such that 

and the Poincar~ generators of the two clusters becomes additive and 

commutative, ~ t  M~¢,~ = 0 , etc. The evolution operator then 

also separates 

H = H r + H" (~8) 

where 

~t ~. 

H'= H" • : " K : I  (49) 
4 

In order to satisfy requirement (2) it is necessary that H t and 

H" be independent of P~ the total momentum of the parent system 

of N particles. If one uses CM variables this requirement seems 

very difficult to satisfy. 

Now the oJ~ of the original (parent) system as well as the a~ and 

~ must be Poincar~ invariant and in particular translation invariant. 

The /~ however, even if chosen Lorentz invariant cannot be translat- 

ion invariant. It follows from (28), therefore, that both ~4~ and 
/ca 
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must nevertheless be translation invariant. This is a necessary 

condition to satisfy (3) • 

In order to satisfy (1) it is necessary that the ~depend only 

on spacelike relative distances. Only those are affected by the limit 

in (~6). On the other hand, the fixations must depend on timelike 

position Vectors. While the ~ depend only on q~ where & indicates 

orthogonality to some timelike vector (e.g. a timelike momentum), the 

~ must depend on the q~ where // means a component of qa para- 

lell to some timelike vector. Otherwise the fixations do not permit 

elimination of the coordinate times qa ° . 

The limits involved in the cluster separation affect only the qab 

and does not take the qa~ to infinity. If particle b goes to 

infinity ~@ would not become independent of b if it is a function 
# 

of q_~ unless ~ also depends on qa~ and in such a way that the 
~O 

q~ dependence is eliminated as lqAl--~ ~. One sees therefore that 

the fixations ~ must be so chosen that the resultant ~ (using (28)) 

will be consistent with the cluster requirements. As an example one 

observes that the very reasonable looking fixations ~ z ~o~ 

do not yield separable ~ for N ~2 . 

8. Interactions 

The above dynamics is based on the free mass shell and its modifi- 

cation due to interaction. The free mass shell 

(5o) 

can be modified in three different ways. The best known of these is 

the gauge interaction 

leading to 

1~(?r-~A.) Cp, IA,) + ~,'- - o (51) 

The gauge functions A~ can be group valued, e.g. of the form 

, c ,  i 
for a Lie group (non-abelian gauge interaction). 

A second way of modifying (50) is by generalizing Minkowski space 

to a Riemann space of indefinite metric ~-~ ~u yielding 
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Physically this means that the particle is in s gravitational back- 

ground field. 

A third modification is the generalization of the mass term to a 

function of the dynamical variables 

which is the form of direct interaction we used in (16). 

In principle+ both modifications (51) and (52) can be written in 

the form (53) but the inverse is not true in general. 

The relation to a gauge field theory is seen by taking for A~ 

a field, A~(x) + and specifying field equations for it that relate 

it to the particles as sources. The solution of the field equations 

then expresses A ~ as a functional of the particle variables which 

may be very complicated and is in general nonlooal in space and time. 

The question of a reduction to the form (53) then becomes a non-tri- 

vial problem. 

Concluding Remarks to I. 

The classical relativistic constraint dynamics of particle systems 

has made tremendous progress in the last few years. It is now on fair- 

ly sound foundations and the essential features seem to be understood. 

This includes in particular the cluster problem and the status of many- 

body forces. 

The main questions that are still not well understood are primarily 

the following: 

(1) The freedom available in choosing three-body interactions when 

the two-body interactions are known+ is not yet fully clarified. The 

same holds for n-body forces with n > 3 • 

(2) The description of spin for classical particles has not yet 

been worked out. 

(3) The global structure of the theory is not yet understood. To 

this end a fully coordinate independent formulation must be provided 

(fiber bundlelanguage). 

($) The relation of this canonical theory to other formulations 

(Lagrangian+ predictive dynamics) has not yet been sufficiently cla- 
rified. 

But it is not too soon to begin applying the theory to various spe- 

cific problems where classical particle dynamics is a valid descrip- 
tion. 



204 

II. QUANTUM THEORY 

I. Introduction 

The canonical quantization of classical relativistic constraint 

dynamics with direct interaction leads to a relativistic quantum dyna- 

mics of directly interacting particles. This theory is intermediate 

between nonrelativistic quantum mechanics and relativistic quantum 

field theory: it is a relativistic quantum theory with a finite number 

of degrees of freedom. Is there a consistent theory of this nature? 

Knowing the classical theory one anticipates various difficulties 

of which the following are representative: 

(1) In a covariant formulation qa ~ and Pa~ will be operator 

valued four-vectors. This means that in addition to the well-known 

operators -~qa ~a and we shall also have an operator of energy pa ° 

and an operator of time qa ° . The latter would imply an uncertainty 

relation ~E.~{ which is independent of the position-momentum uncertain- 

ty relation. A host of questions of interpretation and measurement 

theory arise here. 

(2) The interaction operator ~ (q,p) becomes in the Schr~dinger 
d representation # (q, i ZF~ ) which leads to a SchrSdinger equation of 

higher than second order, and in general to a quasi-differential equa- 

tion. 

(3) Oovariance required a Hilbert space ~ of state vectors, 7~ = 

= L 2 ( R 4N) . What is the physical interpretation of this? 

(4) The constraints which are weak equations in the classical theory 

become equations of the form 

- o 

Since K has a continuous spectrum ~ cannot be in 7~ . One must 
a 

use wave packets or generalize to a rigged Hilbert space. A similar 

problem, but less acute is encountered in ordinary quantum mechanics. 

Our attempt at a relativistic constraint quantum dynamics is less 

than a year old although some important earlier work is related to it 

and helped shape our thinking on this matter. In any case we are far 

from having answers to all the above questions. Nevertheless, important 

progress has been made and we shall summarize a good part of it in the 

following pages. 

2. ~uantization 

The heuristic process called "quantization" is essentially an educa- 
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ted guess at a quantum theory whose classical limit is the given clas- 

sical theory. There is no mathematical rigor in that process. Only the 

limit is to be well defined mathematically. Quantization is an art. 

Attempts by mathematicians to make quantization into a rigorous 

procedure (geometric quantization) leads to a theory which has little 

to do with the quantum mechanics of the physicist. 

In canonical quantization 20 one replaces the Poisson bracket algebra 

of the fundamental variables by a commutor algebra 

with q;, Pbu self adjoint operators on 7{= L2( R 4N) . The funda- 

mental dynamical equation is the generation of a trajectory by a given 

K a . The latter is also a self adjoint operator now, 

(55) 

with ~'a being (a suitably ordered) function of the q and p . This 

dynamical equation thus reads 

: d'r-~ 

with ~H the set of 8N operators q ~ , . . . ,  p~ . The index H 

indicates that we are here in the Heisenberg picture in which all the 

time dependence is in the operators, the state vectors I~H~ being 

time independent. The time here is a set of N parameters ~.~ one for 

each particle. Thus, we have a many-time theory, corresponding to the 

classical equation (18). A single time formalism would require the ~j 

(31). However, they are not necessary in a scattering theory where 

only the asymptotic free states are needed. 

It is conceivable that (56) cannot hold everywhere in ~ and we 

shall be content to have it hold on a set of states I~ that span a 

C ~ . That space would then be the physical Hilbert subspace 

space, 

zL (57) 

The Schr~dinger picture is characterized by time independent operat- 

ors ~ s . All ~a dependence is in the state vectors I ~s~ " The 

transformation U([~I) , ~]=~t~--J ~v maps one picture on the other, 

t s> - (58) 
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and one finds by standard methods that IlL must satisfy 

Therefore the I~) must satisfy 

which is a set of 

(59) 

(60) 

N simultaneous differential equations for ~,~- 

• Its integrability conditions are 

in which one recognizes the quantum analog of the first class constraint 

condition (17). 

The solution of (59) is 

. 

: - I I  e (62)  

At this point the technical assumption of stability of ~ under the 

operators K a is necessary. 

Equations (60) and (61) are the fundamental equations of the rela- 

tivistic constraint quantum dynamics. In fact, eqs. (60) can be regar- 

ded as the relativistic generalizations of the Schr~dinger equations. 

We see that they are in general not of second order, as predicted in 

(2) . But one notices that the difficulty anticipated in (~) did not 

arise: the time derivative term permits one to have solutions ~s~6 

. Physically, this means that the quantum mechanical mass 

shell is not sharp but has a finite (though presumably very small) 

width• This situation arises naturally in the quantization process 

and has not been put in by hand. 

One can show that the fundamental equations lead to a classical 

limit consistent with the theory developed in I • In particular the 
s matrix elements of K a are constraints which vanish in the classical 

limit reproducing the classical constraints. 

3. Many-Time Quantum Dynamics 

The relativistic Bchr~dinger equation (60) is not entirely new to 

the physics literature• As a single ~; formulation it was proposed by 

StueckelberglSand was later discussed by Feynmal6Schwingerl7and others. 



207 

The work I am reporting is based on joint papers with L. Horwitz20'2~ho 
had recenGy studied (60) m the single time formulation 18'19. Independently 

Droz-Vincent 22 ~ carrying out similar studies in a rigged Hilbert space. 

The difficult set of differential equations is expected to be solva- 

ble at least in a perturbation expansion. Following thewell-known 

techniques of quantum field theory it is thus convenient to transform 

into the Dirac picture 

where 

I,~> = U,~ 4 I'~,> (631 

" -i1<2 r~ (64) U~ (c~]) = 7"[ e 

is the unperturbed mass shell in the Schr~dinger picture. One verifies 
D 

that the Dirac picture operators ~ satisfy the free particle equat- 
D S 

ions. Therefore the momenta Pa = Pa are [zB-independent and 

0 

~,~ -~ I(:; * U~-'~:: Uo (661 

The integrability condition (61) becomes 

[~..,~,~]I~> =o (67) 

The fundamental equations in the Dirac picture are the 

forms of (60), 

where ~a- ~ a D 

U o trans- 

(68) 

is the interaction operator in the Dirac picture. 

Their solution can be written as 

(691 

with 

tion, 

U (Cz3,[~ s unitary operator obtained from the ~ a by integra- 

A typical factor in this product is 
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~...~.,, r,....~ + 

and the symbol ( )+ indicates positive ~-ordering increasing from 

right to left. 

The integrability condition (67) permits one to prove that on ~> 

the order in which the [~] are integrated to [~] is arbitrary. It 

follows that the path from [~] to [wl in N-dimensional t-space is 

arbitrary, yielding the same ~(~],[~]) for any path. 

The operator ~(~],~]) permits one to compute a (generalized) 

Feynman propagator in this many-time theory. Let ~(q, [~]) =~qI~> 

then 

with 

(73) 

the associated propagator. 

These expressions and the associated space-time picture are a good 

starting point for the discussion of the physical interpretation of 

the theory and for an understanding of the space L 2 ( R 4N) We shall 

not discuss it here. 

4. Scattering Theory 

In the Dirac picture one has the asymptotic states 

The SchrBdinger states then have the limits 

0 

(74) out 

and similarly for [~]--~+ ~ . 

The two operators (62) and (64) permit one to define the wave ope- 

rators (M~ller operators), 
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IL"I ~ )  1~ (r~) -- n+_ (75) 

which relate the Heisenberg states to the in- and out- states, 

(76) 

As before, one can prove that the order of the N limits in (75) is 

arbitrary. The existence of the limits depends on the interaction func- 

tions. A sufficient condition for the existence is 

A b = t  s 
. -ao  

Finally one defines the S-operator in the conventional way, 

(78) 

and one finds 

In order to check on the cluster decomposition property one needs 

the translation operators 

' /~(5,,)  = e ¢ ~ ' ' ~  (~fspacelike) . (80) 

The interaction is separable if 

(81) 

where ~ is independent of b 

By means of these operators one can then prove that if two clusters 

C p and Cn separate, the S operator factors in the limit, 

I~,,> ~ g'-S"I~,~ (83) 

An important result in scattering theory is the generalization of 

the Lippmann-Schwinger equation to the present theory. It takes two 

alternative forms. One uses the free mass shell in the denominator 
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and reads for the two-body case (without assuming ~=~)21 

- t  _~ ~ )  ~ ~ ~ 
, ~ - . V~H~,~, (84) 

= 

Here ~.~a,= <~,~1%.> is the incident wave function and ~ (~) 
H &4 &L = 

= ~ ]  ~H>+ is the Heisenberg wave function involving outgoing 

waves. The role of the conventional potential is here played by the 

operator V (SchrUdinger picture) 

Theoccur rence  of the operator '~T~ i n  (84) has i t s  o r i g i n  i n  the pos-  
s i b i l i t y  t ha t  each p a r t i c l e  ~ can evolve due to i t s  i n t e r a c t i n g  mass 
s h e l l  operator.  K a ~  Ka° w i t hou t  e x p l i c i t l y  a f f e c t i n g  the o ther  one~ 

(z) . 
%V+ - • (86) 

÷ • e (86) 

Equation (84) can be made the starting point of a perturbation expansion 

in V.I,~T+* - '  . 

Concludin~ Remarks to III. 

There is increasing evidence that a consistent relativistic con. 

straint quantum dynamics of N directly interacting particles does exist. 

We are still far from understanding this theory conceptually but the 

mathematical framework seems to have fallen into place. It now appears 

that this level of theory lies intermediate between (non-relativistic) 

quantum mechanics and (relativistic) quantum field theory. That means 

a relativistic quantum theory with a finite number of degree8 of free- 

dom seems possible. 

In addition to the conceptual questions various others are still 

left to be studied. In particular, one notes the following: 

(1) The theory is to be generalized to include particle spin, espe- 

cially spin ~ . Some attempts in this direction have already been 

ma de. 

(2) The quantum mechanical analog of the classical relation between 

three-body and two-body interactions needs to be understood (and simi- 

larly for n-body interactions); we have not yet explicit solutions 

for interactions ~a that satisfy equation (61). 

(3) It is not clear how this theory applies to electrodynamics. How 
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can quantum electrodynamics be approximated by a theory with a finite 

number of degrees of freedom? 24 

(4) A similar question relates to quantum field theory in general . 

Can pair production as well as single particle production be describ- 

ed? 

(5) There exists a relativistic scattering theoryfor multi-channel 

processes (see the lecture by F. Coester) how is that theory related to 

the constraint theory developed here? Can constraint quantum dynamics 

be developed into a fully general multi-channel theory? 

Finally, as for the classical theory it is not too early to begin 

applying relativistic constraint dynamics to various realistic problems 

in the quantum damain. An excellent beginning has already beemmade 

by the recent work of Van Alstine and Crater 23 on the quarkonium systems. 

More applications like that are needed. They will help establish re- 

lativistic constraint dynamics as an important new field of study. 
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CONSTRAINT HAMILTONIAN MECHANICS 

OF DIRECTLY INTERACTING RELATIVISTIC PARTICLES 

I.T. Todorov I 

Fakult~t fNr Physik, Universitgt Bielefeld 

D-$800 Bielefedld 1 

Introduction 

The relativistic dynamics of a single particle in an external field 

was created -by Poincar~ and Planck- in the early days of the special 

theory of relativity. The theory of a finite system of interacting re- 

lativistic particles -apart from some scattered and inconclusive at- 

tempts in the past- is only taking shape in recent years. Not only the 

road to it has been plagued with difficulties, but the very legitimacy 

of the problem has been questioned on the ground that a finite system 

of particles interacting "at-a-distance" (without an intermediaryfield) 

is violating the "Nahewirkungsprinzip" which is thought to be inherent 

to the theory of relativity. 

If we look back to the sixties and early seventies, the situation 

with the relativistic 2-body problem -to single out one specific topic- 

appears rather queer. On one hand all existing allegedly field theoretic 

fine structure and Lamb shift calculations use (on top of quantum elec- 

trodynamics) some 2-particle equation (most efficiently, a Hamiltonian 

type quasipotential equation). On the other hand, a so-called "no inter- 

action theorem" was put forward (and proved), stating that a relativis- 

tic canonical Hamiltonian formalism is only consistent with a free par- 

ticle motion. (It brings to memory the ancient anecdote about Zeno pro- 

ving the impossibility of motion and his ~pponent just walking in an- 

swer.) 

Now we not only pretend to be moving, but we are also ready to ex- 

plain why we are able to do so. 

The present notes (which can be regarded as a concise version of a 

more comprehensive text in preparation -see T5)) purport to give an 

overall view on the constraint Hamiltonian approach to the subject 

J Permanent address: Institute of Nuclear Research and Nuclear Energy, 

Bulgarian Academy of Sciences, Sofia ll8~, Bulgaria. 
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starting with the classical relativistic mechanics of a single particle 

in an external field and ending with a derivation of the fine structure 

spectrum of a 2-particle bound state in quantum electrodynamics. 

The reader can get an idea about the organization of material from 

the table of contents. 

A note on the list of references 

Although the Subject matter of these notes has never been truly 

fashionable the number of publication in the field is depressingly 

large. (We are aware of a few hundreds of articles, a list of which 

will appear in TS).) The references listed at the end of these notes 

represent just a small section of that huge body and we have had no 

trustworthy criterion in making such a selection. 

The present note aims to supply a short guide to the list of refe- 

rences (in order to give us the freedom not to interrupt too often the 

systematic exposition with historical and bibliographical comments). 

There have been several lines of development in relativistic particle 

mechanics which now happily converge to a coherent overall picture. 

The early stage of development of the subject can be traced back 

from references El), D1,2), P5), W2), H2) (see also later work V2) in 

these lines as well as the review by Professor Hill at this Workshop). 

Two unrelated developments in the sixties have left a lasting imprint 

on the subject. One is the "no-interaction theorem" of Currie, Jordan, 

Sudarshan (CJS) C~), Leutwyler L3), and Hill H3) (see also K1), M2)). 

The other is the development of the quasi~otential approach by Logunov, 

Tavkhelidze and others L6,7) (for later reviews, see F2), R3)). 

The difficult problem of constructing separable relativistic N-parti- 

cle interactions for N ~ 3 has a long history (which is reviewed in 

R6), and $3) as well as in Professor Coester's lecture at this Work- 

shop). The necessity for manybody forces has been realized already in 

the thirties (see P~)). A semirelativistic approximation scheme for 

evaluating 3-particle interactions, which have to accompany the sum 

of 2-body potentials in order to make the theory consistent, was propo- 

sed by Foldy F3) (see also P2)). Landmarks in the solution of the co- 

rresponding quantum mechanical problem(using M~ller's wave operators) 

were set by Coester C1) and Sokolov S~,5). Iterative schemes (in terms 

of powers of the 2-particle interaction and their derivatives) were 

developed recently in $3) and B6) (see also T5)). In our presentation 

in Sec. 6 we follow the work of Bidikov and the author B6). 

The development of classical relativistic mechanics in the seventies 

has gone in three major lines which nowadays are merging together. 
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The starting point of the predictive relativistic mechanics of Bel 

and others B3-5), FS)~ L1,2) is the picture of retarded particle in- 

teraction via a classical (say~ electromagnetic) field which is then 

substituted by an equivalent Hamiltonian picture. 

The second line, characterized by the use of a canonical phase space 

Hamiltonian formalism has its origin in two sets of papers by Dirac 

D2,3). It gave rise to several related developments including the CJS 

work mentioned above, the work of Arens A2) and Droz-Vincent DS), as 

well as the constraint Hamiltonian approach started in T$) and review- 

ed in these lectures. This latter work is based on two sources: Dirac's 

"Generalized Hamiltonian dynamics" D3) and its further development 

(see F1), H1)) and the local version of the quasipotential approach 

developed in T3) and R3,$). (An attempt to construct classical relati- 

vistic mechanics using inspiration from the corresponding quantum theo- 

ry was made earlier in F$),) For later work in this direction, see e.g. 

R5), K2) +, C2,3), M3), L8), H4), S3), TS). 

The third parallel line consists in the development of the singular 

Lagrangian approach (see T1), D$), G1,3), LS) as well as references to 

the earlier work of the Japanese school cited in the first of these 

papers). In practical terms (as far as explicit examples go) this appro- 

ach seems to be equivalent to a special case of the constraint Hamilto- 

nian approach in which the interaction is independent of the energy 

(or, more precisely, it may only depend on the total momentum P thro- 

ugh the orthogonal relative distance r (given by Eq. (5.16) below)). 

Our treatment of gauge dependence of canonical world lines and gauge 

invariance of asymptotic results (Sec. 7) follows the work M3).of Molot- 

kov and the author. A similar result was obtained in the Lagrangian 

framework in G1). 

The space-time formulation of relativistic particle dynamics in 

terms of second order differential Systems follows recent work by Niko- 

lov (see N1)). 

Recent developments of relativistic Hamiltonian (and Lagrangian) 

mechanics can also be found in G2), L$), P1,3). 

+) Unfortunately, it has to be noted that the lack of originality in 
the first two papers in the series K2) is only matched by the lack of 
references there to the author's predecessors. 
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I. Space-time formulation of relativistic particle mechanics 

A world line in a space-time manifold M is a 1-dimensional (time- 

like) submanifold of M , usually given by parametric equations of the 

type 

X~= ~ C ~ )  ~= 0,~,2,~ ; - ~ o ~  ~ . 

For a Galilean invariant (non-relativistic) system there is a privi- 

leged choice of the evolution parameter t , namely, the time-component 

x ° of the 4-vector x . It does not change under homogeneous Galilean 

transformations (and, in general, only the origin of the time axis may 

be shifted). For a relativistic system this is not the case: the sepa- 

ration between space and time components of x depends on the choice 

of the Lorentz frame (and the proper time, which is a natural evolution 

parameter for a single /massive/ particle, has no Universal extension 

to many particle systems). This makes it desirable to have a formulat- 

ion of relativistic dynamics which does not depend on the choice of t 

(provided, say, that x ° dx° = -~ > 0 ). (Such a "physical motivation" 

should be superfluous for a geometer: by definition, a world line is 

a parametrization independent object, and a theory designed to deter- 

mine it (from some "initial data") should not depend in an essential 

way on the evolution parameter either.) 

In a Newton like formulation already the choice of initial data 

poses a problem, if we insist on reparametrization invariance. Indeed, 

the momentary state of a particle is conventionally given by its posi- 

tion and velocity at a given time. However, the g-velocity depends on 

the choice of the evolution parameter: for t replaced by f(t) 

(f = ~ 0 ) x goes into fx . The fact that under an arbitrary 
(monotonous) change of t the g-velocity is just dilated (by a posi- 

tive factor) suggests a simple way out of this difficulty. The initial 

data should consist of a space-time point x and a future pointing 

tangent ray to the world line at that point. This leads us to (a slight 

modification of) the mathematical notion of a (first order) different- 

ial system (which assigns to each point x ~ M a k-dimensional sub- 

space in the tangent space TxM ). In order to be able to formulate a 

parametrization independent version of Newton's second law, an exten- 

sion of this concept is needed to second order systems. Such an exten- 

sion has been worked out in the present context by P. Nikolov (see N1)). 

In an attempt to give an idea about this approach without entering 

the differential geometric subtleties inherent to it, we shall consider 
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in detail the simplest case of a single particle system in an external 

field. 

Let M be a pseudo-Riemannian manifold of signature -+++ (whose 

curvature may be physically interpreted as a manifestation of an exter- 

nal gravitational field). The space of 4-velocities at a point x is 

the future cone in the tangent space TxM consisting of (non-zero) 

t-vectors x such that ~o~ I~ . The union of all these spaces (for 

x varying in M ), which can be regarded as a subbundle of the tangent 

bundle TM will be denoted by T • M . The parametrization independent 

concept of velocity is given by the ray Ix] of all vectors of the 

type ~ where x is fixed and ~ > 0 . The bundle of all such rays 

is the projectivization P(T > M) of T• M . Thus we shall identify 

the space of (instantaneous) states of a spinless point particle with 

the 7-dimensional manifold P(T> M) whose points in local coordinates 

are given by the pairs (x, Ix] ). (The notation Ix] means that x~ 

are used as homogeneous coordinates in P(Tx~ M) ). 

The manifold P(T> M) may, alternatively, be viewed as the space 

of initial conditions for a (1-particle) mechanical system. In order to 

introduce a parametrizstion independent concept of acceleration and 

to have room for Newtonian type of equations of motion, we have just 

to repeat the above construction taking the tangent space T P(T> M) 

and its projectivization, the 13-dimensional space P(T P(T~ M) ). 

Let ~ : P(T >M)~M be the projection which makes correspond to 

every point (x, Ix]) of the fibre bundle P(T~ M) the point x of 

the base space M , and let 1% T be the corresponding tangent map 

Denote by ~ the projective counterpart of ~T ( ~maps P(T P(T,M)) 

into P(T~M)). A (1-dimensional) second order differential system 

is defined as a section d~: P(T>M)--~P(T P(T >M) ) satisfying the 

condition 

(¢~)) = ~ for  every ~ • ~(T~M). (1.1) 

We shall demonstrate that this geometric concept provides a parame- 

trization independent generalization of Newton's equations of motion. 

To this end we first introduce independent (rather than homogeneous) 

coordinates u i in velocity space. We shall assume, for the sake of 

definiteness, that we are dealing with a massive particle with a time 

like world line. In this case it is convenient to use the normalized 

t-velocity 

• ( 1 . 2 )  
~/Z~ 
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whose space components u i can serve as independent coordinates in 

P(Tx> M) . (More generally:.if a light like motion is also allowed, 

one can take instead v I = ~ as independent parameters.) With this 

~o • [~ ~i]) as local parameters in notation we can choose (x ~, 4~; 

P(TP(T ~M)) (regarding i~ ,~i as homogeneous coordinates in the 

6-dimensional fibre). A second order differential system has a local 

representation 

~: c ~ , ~ )  ~ (x~, ~ ; [~,~), ~(~,~)] ), 

Condition (i.I) now implies that S 9 should be proportional to the 
~-velocity: ~,~) = ~ (~,~) ~. 

Let ~ be an integral curve of ~ in P(T>M), so that 

T~.~,~ = ~c~.~) for all ~.~)~. (1.3) 

If we introduce at this point an evolution parameter ~ on ~ , then 

a~ ° ~ , ° 

Eq. (I.4) implies the Newton-like equation 

~c~). ~ - ~ . (1.5) 

The multiplier m(r) depends (in general) on the choice of evolution 

parameter and on the definition of the force F . Eq. (1.5) can also 

written in a covariant $-dimensional form 

~. ~_~" = ~ (for ~= ~v~=-~) (1.6) 

if we define F ° from the orthogonality relation 

~]= ~ ~ ~ V ~- 0 (1.7) 

(which is a consistency condition for x~ being a normalized g-velocity). 

We can produce manifestly reparametrization invariant equations of 

type (1.6) starting from an action principle with a Lagrangian which 

is a homogeneous function of degree, 1 in ~ . An example of physi- 

cal importance is provided by the Lagrangian for a massive charged 

particle in an external gravitational and electromagnetic field: 

The Euler-Lagrange equations of motion can in this case be written in 

the form %~) ~ = ~ V.~ ~ 
D= (1.9) 

D ~P 
where u is given by (1.2) , F~ = 9~v.~,~ ~ , and ~ is the 

covariant derivative: 
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We shall end up this section by writing down without further explana- 

tion the relevant definitions in the N-partide case. 

A relativistic N-particle dynamics is defined by the commutative dia- 

gram • } 
where ¢ is an involutive section. (A section ¢ is called involutive 

if for any pair of vector fields X 1 , X 2 the condition Xa(X ) ~ ~ 

(a=l,2) implies [X1,X2] G • . According to Frobenious theorem the 

differential system ~ is integrable iff it is invOlutive Eq. (1.11) 

includes the requirement that • lies in the domain of the "projecti- 

ve tangent map" ~ .) The restriction (Y~ of the differential system 

to P(T Mk) satisfies all conditions of a 1-particle dynamics. The 

"external force" F k , acting on the k-th particle, will, in general, 

appear as a function of the coordinates and velocities of all parti- 

cles. 

We now proceed to the discussion of symmetry. Let G be a trans- 

formation group of M whose induced action (Vg, %; gmG) on 

(P(T>M), P(T P(T>M))) is a bundle homomorphism; in other words, if 
o 

is the projection in the fibre bundle P(T P(T,M)~--P(T~M) , then 

~.V = V -W . g g 
We say that G is a symmetry group of ~ (regarded as a section in 

the above fibre bundle) if 

The notion extends in an obvious way to the N-particle case. 

The largest symmetry of M which naturally appears in our frame- 

work is the conformal group locally isomorphic to SOo(D,2) . The lar- 

gest symmetry group for a particle with a fixed positive mass is the 

Poincar[ group whose connected component will be denoted by ~. 

We shall illustrate here the implication of Poincar6invariance on 

the example of a 1-particle system in D-dimensional space-time, assuming 

the standard (affine) action of ~+¢ on M for which 

We shall consider the (2D-I) dimensional open submanifold P(T+M) of 

P(T> M) defined as the set of pairs (x, Ix] ) for which x is 

(positive) timelikeo It is a homogeneous space of ~+~ with stability 
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group of a point isomorphic to SO(D-I) . 

For space-time dimension D ~ 2 this "little group" acts nontrivia- 

lly on the accelerations and hence on the forces leaving no non-vanish- 

ing (D-1)-vector invariant. Consequently, the condition of Poincar~ 

invariance of the 1-particle dynamics leads to free motion (F=O) . 

For D=2 , however, the little group SO(l) is itself trivial and im- 

poses no extra condition on the force so that the above result does 

not hold. Indeed, there exists a non-trivial Poincar~ invariant 1-par- 

ticle dynamics in 2-dimensional space-time. Using the proper time va- 

riable we can write the ~+$-invariant equation 

~p= ~£p~v where ~+4 m ~ ÷ ~  =0 ; ~40=-~4 ~e°4)=~. (1.1~) 

Its solution satisfying the initial condition v m (ul/u o) I ~ =o = th~ 

is u ° = ch (~ +~), u I = sh (~+~) . The particle world line is 

in this case a branch of a hyperbola with isotropic asymptots. 

Note, however, that the system (1.1$) is not invariant under space 

reflections. There is in fact no non-trivial (smooth) 1-particle dyna- 

mical system, invariant under the orthochronous Poincar~ group ~ 

(The condition of smoothness is important, since otherwise the system 

governed by the equation 

= , • > o  

provides an example of a ~#-invariant system with nonstraight world 

lines for D=2). 

Going back to higher space-time dimensions (including the realistic 

case D=4 ) we conjecture that there exist nontrivial Poincar@ inva- 

riant N-particle dynamics for N ~2 since the stability subgroup of 

almost all points of (P(T>M)) N is trivial. 

(This conjecture will be further justified in Sec. 7C .) 

We omit here the discussion of spin (a 1-spinning-particle system 

in an external field is recently studied in V1) +) ); the phase space 

of a free classical spinning particle is described in Sec. 3 • 

+) Note that the authors of V1) use the term "chronometric invariance" 
for reparametrization invariance. 
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2. Hamiltonian constraint for a char~ed spinless particle in an external 

field 

The idea behind the constraint Hamiltonian approach to relativistic 

particle dynamics is best illustrated by the simple example of a charged 

particle in an external field. 

We start with an auxiliary 8-dimensional "large phase space" 

F = T~M where M is a (g-dimensional pseudo-Riemannian manifold of 

signature (-+++) whose metric tensor can be regarded as describing an 

external gravitational field. The cotangent bundle +) ~ has a natural 

symplectic structure, given by the 2-form 

= ~^~p~ (2.1) 

or, equivalently by the canonical Poisson bracket relations 

0 = ; = ( 2 . 2 )  

It turns out that the constraint which allows to express the particle 

energy E = -P as a function of its 3-momentum and the external o 
field also determines the equations of motion. We can identify the 

(generalized) Hamiltonian with the constraint 

The weak equality sign (~) indicates that, in evaluating Poisson 

brackets, x and p should be regarded as independent variables and 

the constraint (2.3) should only be applied after performing all dif- 

ferentiations. The positive factor ~ , which is allowed to depend 

on the point in phase space, plays the role of a Lagrange multiplier 

and is related to the choice of evolution (or "time") parameter. 

Indeed, the Hamiltonian equations of motion for x , 

~ =  ~,H~- ~H = A, ) ,  ( 2 . g )  

show that a change in ~ is equivalent to a change in the time scale. 

For a positive mass m it follows from (2.5) (2.$) that i is propor- 

tional to the invariant length of the g-velocity: 

+) A concise and readable exposition of the basic prerequisites of 
symplectic geometry is contained in some 75 pages of the excellent 
treatise by Treves T6). An even shorter summary (of what is needed 
for reading the present notes) is given in the first chapter of TS). 
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~ ~r  , ~ r& '  =_~zm~ (2.5) 

The reparametrization invariance of space-time observables (such as 

the particle world line or the 7-dimensional instantaneous state of a 

particle, introduced in the preceding section) is expressed in the 

Hamiltonian picture as their independence of the Lagrange multiplier 

. 

Note that the constraint (2.3) was introduced by Dirac D1) in the. 

early forties; he was the first to realize that a constraint of this 

type not only excludes extra variables but also defines the dynamics. 

The ~ independence of observables indicates that the physics of 

the problem is completely characterized by giving a (7-dimensional) 

surface 
vE ~ ~ I  (~' A~) = 

in r , the Generalized 1-particle mass-shell. The inequality p°-eA°, 0 

in (2.6) is necessary and sufficient in order to have a positive time- 

like or light-hike velocity ~ (for m~o , A >o , as assumed). 

A straightforward way to establisha correspondence between the space 

time picture of Sec. 1 and the present constraint Hamiltonian descrip- 

tion of a 1-particle system is provided by the Legendretransformation 

( 2 . 7 )  

where p is regarded as a function of the positions and velocities, 

defined (implicitely) by the Hamiltonian equation ~ = ~H . For H 

given by (2.3) we find ~' 

For a positive mass particle the Lagrange multiplier 
~T, = 0 ded from the constraint equation 9-~ 

the resulting Lagrangian 

(2 .8a )  

(2.8b) 

can be exclu- 

(which coincides with (2.5)); 

L = - . , , , - ~  + e ~ A (2.9) 

coincides with Eq. (1.9) of the preceding section (and leads to the 
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same reparametrization invariant equations of motion). 

Remark. There is a freedom in the definition of the nonconserved inter- 

acting particle momentum and the corresponding symplectic structure. 

We have chosen to describe the interaction of a charged particle with 

an external electromagnetic field by "deforming" the mass shell. The 

same physics can be described by a deformation of the canonical Poisson 

bracket structure (keeping the mass shell intact). Indeed~ introducing 

the generalized momentum ~ = p - eA I we can rewrite the Hamiltonian 

constraint (2.5) in an A-independent form, 

The interaction with the electromagnetic field then reappears in the 

Poisson brackets among the generalized momenta: 

It corresponds to the symplectic form 

= 

We leave i t  to  the reader  to  v e r i f y  t h a t  the Hami l t on ian  (2 .10)  and 
the Poisson b racke ts  (2 .11)  lead to  the same equat ions  of  mot ion (1 .10 )  
( f o r  the x ' s  ) as be fo re .  

3. The phase space of a classical spinning particle 

large phase space ~$~ of a classical spinning particle will The 

be identified with a lO dimensional symplectic submanifold of the 15 

space ~15 spanned by the space-time dimensional VeOt O~ coordinates 

x~ and the Poincar~ generators p~ and JW which satisfy the stan- 

dard (canonical) Poisson bracket relations 

['Ii.,.v, f~,~j =~t,..~ ~v - '~vAt P, (3.1b) 

(3.10) 

We shall define the mass-spin shell~4 c ~÷ of a free relativistic 

particl e of mass m>o and spin s > o as a 9-dimensional Poincar~ and 

space reflection invariant submanifold of the 12-dimensional surface 

~m:@ ~ given by the Casimir constraints 
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7Nt  + ~ s  ~ = 0 

We have 

~ + ~ = 0 

W being the Pauli-Lubanski vector 

(3.2a) 

• ~°~ o (~.2b) 

where 

a ~  = ~'~ - L e, ; LF = x~,- ~ P ~  (3.~a) 

The three additional relations will be derived from the following re- 

quirement. 

Introducing the Hamiltonian constraint 

(3.5) 

where ~ and ~2 are arbitrary Lagrange multipliers, we demand that 

the particle world line on ~sis independent of ~l and ~2 " Since 

for ~2=0 we have x = {x,H~ = ~l p ' it follows that the vectors 

and p should be colinear (i.e. ~xl = ~P)) for any ~l ' ~2 " 

The necessary and sufficient condition for such a "gauge invariance" 

of world lines is 

It turns out that this requirement, together with the condition of 

space reflection invariance determines the mass-spin shell completely. 

Let ~Sx~ be the dual tensor to S : 

Then the ~(2,~ ) Casimir operators 

have zero Poisson brackets with all dynamical variables (i.e. with all 
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functions on ~l~). 

Comment. The existence of a non-trivial centre of the Lie algebra of 

Poisson brackets on ~l~ (consisting of all/smooth/functions of the 

variables (~.7b)) indicates that ~l~ is not a symplectic manifold. 

More precisely, there is no symplectic form on ~l~ which corresponds 

to the Poisson brackets (3.1). 

According to (~.~), (~.~), (~.l) Eq. (~.6) implies 

In order to exploit Eq. (~.8) we shall establish the identity 

(~.8) 

To this end we shall use the fact that for every bivector there exists 

an (orthonormal) basis (e °, e l, e 2, e ~ ) in Minkowski space such that +) 

= , - % e , )  (~.lOa) 

#~F, = ~, le~ e~-  ~ ~ e,  e r ~ - ~ , (  o , o 

*s~t" ~ ,  = ~., B, {e'"e;* e~e~,÷ e~e; -  e°~e~')=~A,~," • 

and hence, 

We deduce Eq. (3.9). Multiplying both sides of (3.8) by 

(3-9)~ we find 

Introducing the pseudoscalar ~ by 

and using the equation V2~ ClP 

(3.10b) 

(3.11) 

@SvA and using 

(3.12a) 

2 
and the relation (3.3) we deduce that 

+) See, e.g., T6) Vol. II Sec. VII.1. corollary 1.5 (P.351). 
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Thus we end UP with the constraint 

V,, o .  
Finally, invariance under space reflections implies 

and hence 

(~.13) 

(~.l@) 

~wg.v ~ s ~ (3.15) 

These are the additional constraints which complete the definition of 

J~ms" (Note that only three of the four constraints (3.16) are inde- 

pendent, because of the strong equation pV=O). The existence of a non- 

trivial solution p of the system of equations (3.16) implies the 

vanishing of the determinant of the matrix (Sp~) 

Hence Eq. (~.l~) is a consequence of the constraints (3.16) 

which also follows from (3.9)). 

For p2< 0 the rank of the matrix of Poisson brackets 

(a fact 

is 2(the constraint (3.14) being first class). Eq. (3.1~) (or (9.17)) 

implies that Sp, is a decomposable bivector. The constraints (3.16) 

can be solved by writing 

or, equivalently, 

For Sp, given by (3.19a) the product 

i s  a 2 - d i m e n s i o n a l  p r o j e c t i o n  o p e r a t o r :  

(so t h a t  

(3.19a) 

(3.19b) 

(3.2oa) 

(3.20b) 

~p = 0 = ~W ) • It is straightforward to verify that 

*g,) 
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We are now ready to define the I0 dimensional symplectic manifold 

~s~which plays the role of phase space of a "conformal particle" of 

spin s and positive energy, but unrestricted (positive) mass: 

o , Ill } . (3.21b> 

According to (5.18) the definition (3.21a) of ~4 involves a pair of 

second class constraints. The bracket structure on ~ is obtained 

by a modification of the original Poisson brackets due to Dirac. 

Let ~ be the 12-dimensional submanifold of ~14 obtained by im- 

posing the first class constraints (5.i~) and (5.15) and let ~ = ~ . 

The Dirac brackets {f,g~ are characterized by the following require- 

ments (see D3) HI) ). 

(a) They have the algebraic properties of a commutator and satisfy 

the Leibniz rule for differentiation: 

(b) The constraints (in our case (5.16)) have zero Dirac brackets 

with any dynamical variable: 

(c) If f is an invariant observable on ~: (i.e. if it has weakly 

vanishing Poisson brackets with the constraints), then its Dirae brac- 

kets with any dynamical variable coincide with the corresponding Pois- 

son bracket in ~ : 

These conditions determine the Dirac brackets uniquely. In order to 

construct ~f,g~ in the case at hand, we observe that according to 

(3.18) and (3.20) 

~% s ~- 

It is now a simple exercise to verify that the brackets 
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satisfy all requirements (a-c) of the definition of Dirac brackets. 

Since the Poincar~ generators are invariant observables (in the sen- 

se of condition (c) their Dirac brackets with any dynamical variable 

coincide with their Poisson brackets (see (3.1)). For the Dirac brac- 

~F and ~, on the other hand, we find kets of 

(3.25) 

(3.26) 

(3.27) 

~.~ (3.28) 

Summarizing the results of this section we would like to stress the 

following point. The assumption about gauge invariance of world lines 

(expressed by Eq. (3.6)) has led us to the constraints (3.16) which 

imply that the position observables of a spinning particle cannot be 

canonical (their brackets being instead given by (3.25)~.This property 

of physical position variables has first been pointed out by Pryce in 

19~8 (see PS) ). 

For other work on relativistic spinning particles see, e.g. W1). 

4. Generalized N-particle mass shell 

SA. Definition. The fibre bundle J~--'U~ 

The large phase space r~of a system of N (spinless) particles 

is taken as the direct product of single particle phase spaces of Sec. 

It is equipped with the (Poincar~ invariant) symplectic form 

The generalized N-particle mass shell is defined as a 7 N-dimensional 

connected Poincar~ invariant submanifold ~ of r~ with the properties 

listed below. 

(i) In any Lorentz frame the surface ~ is locally given by N ca- 

nonical equations of the form 

Here the relative co-ordinates qab = qa-qb are required to be space- 
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like 

> o  

w h i l e  the  t o t a l  momentum 

? -  ZI 

is assumed to be positive time-like: 

for 4g g ~ b ¢ ~ (~.~) 

(~.~) 

(ii) The equations defining~ are compatible with respect to the 

Poisson bracket structure on r ~ : 

(In the terminology of Dirac, ~satisfying this property are called 

first class constraints.) TO be precise, we shall adopt the following 

stronger requirement (whose formulation makes use of a more sophisti- 

cated mathematical language). 

Let KerWIgbe the set of all vectors tangent to ~ , on which the 

restriction ~#g of the symplectic form (g.1) vanishes. (If~is given 

locally by the set of equations ~= 0, a =l,..., N , then Ker~i~ 

is generated by the Liouville operators 

a l s o  c a l l e d  H a m i l t o n i a n  v e c t o r  f i e l d s . )  We assume t h a t  i t  i s  an N-d imen,  

s i o n a l  i n t e g r a b l e  v e c t o r  sub -bund le  +) o f  t he  t a n g e n t  bund le  T ~  , and 

t he  f o l i a t i o n  

~ /~ - -  ~ (~. 8) 

i s  a ( l o c a l l y  t r i v i a l )  f i b r e  bund le .  The 6 N-dimensional  base s p a c e  

of  t h i s  f i b r e  bundle  i s  the  (gauge i n v a r i a n t ! )  p h y s i c a l  phase space .  

+) A vector sub-bundle ~of a tangent bundle is inte~rable if the com- 
mutator [X,~ of any two sections of ~is again a section of ~'. 
If ~ is given by the first class constraints ~#=0, then the points 

of ~ can be identified with the N-dimensional integral surfaces 
~=f£¢t .... cN) of the system of partial differential equations ~_K= 
= L~ on M~ • r~ 
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(iii) In order to have a standard scattering theory we require s 

separability (or Cluster decomposition) propertywhich says, in a phy- 

sical language, that clusters of particles separated by large space- 

like intervals do not interact. We shall not attempt to give the most 

general geometric formulation of this assumption but will just note 

that it implies, in particular, 

whenever the constraints (%.2) are defined globally (m a being the mass 

of particle a ) . 

Comments and remarks 

l) It should be stressed that we define a relativistic Hamiltonian sys- 

tem by the surface /~ (and the form ~ ) and not by the specific 

(local) equations which describe 2~ . Indeed, the same surface can be 

given in terms of different sets of constraints and that should not 

affect the physics. We shall actually exploit the freedom in writing 

down the equations for /~ in various ways, depending on the problem we 

are dealing with. For the general discussion of this section and for 

comparison with the Curie-Jordan-Sudarshan (CJS) approach C4) (see 

Sec. 7B below), it is convenient to use the set (%.2) of equations sol- 

ved with respect to the particles" energies. It has the drawback, how- 

ever, of not being manifestly Lorentz invariant. (It can be made mani- 

festly Euclidean /and time-translation/ invariant by assuming that the 

functions ~ only depend on the scalar products of their 5-dimensional 

vector arguments.) In order to ensure the assumed Lorentz invariance 

of /~ we have to demand the (weak) vanishing of the Poisson brackets 
= _joi of ~ with the Lorentz boosts Joi where 

This leads to a set of (strong) non-linear partial differential equat- 

ions for the functions h a : 

(In the canonical gauge, in which all ~2 are equal /see Eq. (%.1%) 

below/, the second term under the summation sign vanishes). In descri- 

bing the set of admissible 2-particle constraints (Seo. 5A) we shall 

use instead a manifestly covariant form of ~ a " 
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2) In the 2-particle case we add the condition 

(meaning that particle energies are positive in the centre of mass fra- 

me) to the inequalities (4.5) that determine the range of particle mo- 

menta on ~. . 

3) The strong equation (~.6) is a consequence of the weak equality 

~ , ~ b ~  O =  c - -.-(={~'~-) for ~ given by the canonical expres- 

sion (4.2) . Our second requirement ensures the reparametrization in- 

variance of the theory (which involves, a priori, an N-dimensional ma- 

nifold of evolution parameters). 

4) The qualification "local" concerning the canonical equations of 

the constraints means that we would not like to exclude a priori 

the possibility that pa ° are multivalued functions of the remaining 

variables. 

5) Theories in which only conditions (i) and (ii) (but not necessarily 

(iii))are required and which give room to confining potentials (e.g., 

of the type studied in I~) can, of course, also be considered. As alrea- 

dy stated, the separability requirement (iii) is only needed to ensure 

the existence of scattering states and of an S-matrix. In particular, 

it will not be used in our discussion of gauge dependence of particle 

world lines (see Sec. 7). 

6) If we identify physics with particle world lines and associated 

asymptotic representations of the Poincar@ group (but regard the 

choice of relative momenta in the interaction region as a matter of 

Convention), then different submanifolds ~ of P may correspond to 

physically equivalent dynamics. Two generalized mass shells ~ and~ 

are considered as ph[sically equivalent if for any fixed choice of the 

Hamiltonian H = ~ t h e y  lead to the Same world lines for the same 

initial conditions, and if, in addition, they give rise to the same 

realization of the Poincar@ group. If the mass shell /~ is separable 

(that is, if requirement (iii) takes place) then we demand that~ is 

also separable and that the difference of the corresponding canonical 

constraints ~-~vanishes for ~ a--* ~" A family of physically 

equivalent generalized mass shells is obtained by applying to a given 

all canonical transformations of the type 

I *  , • 

Because of the Poincar@ invariance of F the generators Of the Poinca- 

r@ group do not change uuder a canonical transformation: 
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A,. -'1-" T 4- 

It can be proved that locally the transformations of type (4.12) are 

the most general ones with all these properties. If, in addition, 

F-~0 and ~W/~ -~0 for ~a ~ ~ then the asymptotic moments also 

coincide: ~ = p~S . in the Lagrangian picture a transformation 

of the form (#.12) corresponds to the addition of a total time deri- 

vative to the Lagrangian. 

7) A generalization of the above scheme is also possible, which inclu- 

des manifolds ~ with s boundary. An example of this type is the 

elastic scattering of rigid balls (see MS) ). Singular potentials with 

singularities on lower dimensional manifolds (like the Coulomb potent- 

ial, considered in Sec. 5B) are included in our scheme. The singulari- 

ties of the functions h a (or ~a) have to be excluded from ~ (which 

is not assumed to be a closed manifold). In particular, Eq. (4.3) ex- 

cludes coinciding points +) from ~ (qa # qb for a~ b). Unphysicsl 

(say, strong attractive) singularities are automatically discarded 

by the integrability condition involved in assumption (ii). 

SB; Gau~es and Hamiltonians 

A Hamiltonian H of an N-particle system is defined as a linear 

combination of the constraints ~ with positive (~-dependent) coef- 

ficients ("Lagrange multipliers"). The Lagrange multipliers can be 

determined up to an overall factor by giving N-1 gauge conditions 

(whose physical role is to pick up an equal time surface in ~ ) and 

demanding that they have (weakly) vanishing Poisson brackets with the 

Hamiltonian. 

It will be sufficient for our purposes to consider gauge conditions 

of the type 

~4~b = 0 , 4 ~ ~ (~.15) 

where n is a time-like vector; for N=2 we shall assume n to have 

zero Poisson brackets with q=ql2 (and thus it will only be allowed 

to depend on the total momentum P in that case). If n is a constant 

vector then we can choose the Lorentz frame in such a way that the time 

axis points along n , so that conditions (4.15) assume the form 

+) Such an assumption is justified because the known physical interac- 
tions (like electromagnetic and gravitational) are singular for 
coinciding arguments. One can, however, consider a more general sche- 
me as well,in which the inequalities (~.5) do not take place (see MS). 
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~ = o , a, 6 : A,...,~. (~.z~) 

The most general Hamiltonian constraint is then proportional to the 

sum HC of canonical constraints: 

H~= ~ ~2= i_~°(=o) where i:[L. (~.15) 
4= I 4=4 

The remaining freedom is fixed by the choice of the time scale. The 

Hamiltonian H C corresponds, in particular, to an evolution parameter 

t equal (up to a common additive constant) to the zeroth component 

of each of the position 4-vectors: 

t_~o : ~ = ... : ~: (4.1s) 

Indeed, bydefinition, t is an evolution parameter, corresponding to 

a Hamiltonian H , if for any dynamical variable f we have 

d% 
For H = H C and f = q% we find (according to (4.2) and (4.15) 

~ _To (4.17) 

so that q% = t + C a . Finally, the constants of the motion 0 a have 

to be equal because of (4.14). (Note that a more general gauge condit- 

o ~ 0 is excluded by the requirement that ion of the type qab = Cab 

the vectors qab are space-like on ~6.) 

Thus the gauge is fixed by giving the equal time surface (of type 

(4.15))~ which specifies the relative gauge, and the time scale (an 

example of which is provided, say, by the first equation (4.16)). We 

shall say that a dynamical variable f is an observable, if its time 

evolution is independent of the choice of relative gauge, i.e., if 

It is easily proved that f is an observable, if its Poisson brackets 

with the difference 

vanish (weakly). 
A gauge invariant observable is an observable which is at the same 

time a constant of the motion. The generators oT the P6incar6 group 
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P~ and J ~ are always gauge inyariant observables (because of the 

assumed Poincar~ invariance of ~ ). 

In geometric language a gauge specifies for each value of the evo- 

lution parameter a section of the fibre bundle ~-~ ~ (4.8). 

5. Admissible two-particle interactions 

5A. Manifestly invariant compatible constraints for N=2 

In order to exhibit a class of generalized 2-particle mass shells 

it is useful to take Lorentz invariance explicitely into account and 

to look for a pair of manifestly Poincarg invariant constraints 

~ = ~ ( , ~ .  ~ )  • ~ ~ o . ~=~,~ (5.1) 

satisfying the compatibility condition 

{~ ,  ~=~ ,'~ o .  (5.2)  

Let us first work out some 2-particle kinematics. 

We define the relative momentum 

t ~ = f ' . ~ , - / " ' e ' -  

requiring that 

Taking P and 

in the form 

as independent variables, we can write Pl and P2 

~- ~ ÷ ~ ~- ~,~-~• (5.5) 

Inserting (5.5) into (5.4) we find that 

- = '- + ~'~-~ (5.6) ~_ ~ ~'~- ~ so that ~,, ~ _ 

The compatibility condition (5,2) becomes more tractable in terms of 

the relative co-ordinates 

$ = % - ~  (5.7) 

and p , and the following linear combinations of the original cons- 

ira ints : 

,e , -u, , -  = q, + v (~0) , ~= ,~,-< (~=T~) ( 5 . ~ )  
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where 

= 

is the value of the relative momentum square on the free 2-particle 

mass shell. Inserting ~l = H + ~ (~+D) and ~2 = H- ~z(~+D) in 

Eq. (5.2), we find 

~ ~ 

For given D the corresponding strong equation can be used to determi- 

ne the general admissible form of the interaction function ~ . (It is 

a first order linear partial differential equation for ~ , Whose so- 

lution involves a functional freedom.) For most of these lectures we 

shall consider the simple special case in which 

~=o = "~. ~@ (5.12) 

The last equation is satisfied by any function ~ which depends on 

t~rough 

~ = ~+ (~)~ where ~ = ~  (~z= -i) . (5.15) 

The solution thus obtained is general enough to accomodate (in its 

quantized version, including spin) the quasipotential equations con- 

sidered so far (see, for a review, R~), and Sec. 8 of these notes). 

A special solution with D#O is given by Eq. (7.1) below. 

Remarks 

l) The functions ~ in the constraints (5.1) are not fixed uniquelly 

by the surface ~ even if we assume that they go to zero for large 

~q±l . This is clear from the example of the constraints 

L 

where K $ P .  (and l i m  ~a = 0 ) wh ich d e s c r i b e  the  f r e e  p a r t i c l e  mass 

shell  fn ~ s g u i s e . ~  order to make the separation of the i~ teract ion  
term in (5.1) unique we shall assume that ~a may only depend on the 

relative momentum p (~.22) through the angular momentum 

z C % ~ - ~ ) ~ , - ~ . , / , ~ , ) = ~ , ~ - ~ / o  ~ (5.1~) 
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apart from a possible linear dependence in pq . Under this assumption 

the relevant (Poincar~ invariant) solution of (~.31) can be written in 

the form 

where 

(5.15) 

(5.16) 

Note that in the examples of Secs. 5B and 8C we deal with a still 

simpler interaction term 

2) The requirement (i) of Sec. 4A, which asserts the existence of the 

canonical form (~.2) of the constraints, sets an additional res- 

triction on ~a : 

~P~ J > o for 7 ° > I ~ I (5. lS) 

(The sign of the determinant is chosen to fit the free-particle case 

and hence the limit r -,~ ; it cannot change with r since d 

should not vanish anywhere.) In the special case when ~l = ~2 = ~ has 

the form (5.17) Eq. (5.18) gives 

where 
, ~  9o ~ _ ~ ~ 

= ~ ~ r  "11 -~,- ' 

Going to the centre of mass frame we find, 

r), 

in particular (for large 

~,~,~,o or ~ '> !~¢-'4~1 C i . e . ~  ~0) . (5.20) 

These inequalities are, however, not automatic for the bounded motion 

(for which one cannot go to the large r limit). 

5B. Relativistic reduced mass and minimal Coulomb interaction 

One qualitative reason why a 2-particle system is so much simpler 

to study (even in the non-relativistic case) than a system of N in- 

teracting particles for N~ 3 , is displayed by the possibility of 

reducing the study of two spinless particles to an effective one-patti- 
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cle problem in an external field. (There does not seem to be any com- 

parable reduction for the 3-particle problem.) 

The key notion in studying the relative motion of a non-relativistic 

2-particle system is the concept of e reduced mass m , satisfying the 

equation 

where M is the total mass of the 2-particle system (M = m I + m 2 

for non-relativistic particles). We shall extend this concept to the 

relativistic case by simply replacing M with the relativistic total 

mass 4=~= . Thus we come to the notion of a relativistic reduced 

mass, m w , given by 

mm~ -- ( 5 . 2 2 )  

We shall identify the remaining characteristics of the effective 

particle and of the "external field" in the centre of mass frame (the 

effective "external source" being st rest just in that frame) We shall 

work with the special 2-particle constrsints (5.12) (5.17) throughout 

this section so that we shall have, in particular, 

Note first of all that the relative momentum p and the co-ordinate 

q~ have zero time components in the rest frame of P : 

?= Co, f )  , % =  Co, Z ) for ~=C'~, ~) • (5.2~) 

Recalling that the on-shell value of p2 is b2(w) (5.10) we define 

the energy E of the effective particle of mass m w and 3-momentum 

p by 

- > o (5.25)  

(Note that the positivity of the right-hand side of (5.25), which we 

assume, is a stronger restriction on the value of w than the require- 

ment (5.20) of the preceding subsection). 

It is easily verified that the free effective particle constraint 

preserves the Markov-Yukawa gauge condition 



2 3 8  

~ :  0 ( 5 . 2 7 )  

C o n s i d e r  a sys t em of  two c h a r g e d  p a r t i c l e s  ( o f  c h a r g e s  e I and 

e 2 ) .  I n  t he  n o n r e l a t i v i s t i c  l i m i t  t h e i r  i n t e r a c t i o n  i s  d e s c r i b e d  by 

t h e  Coulomb p o t e n t i a l  

Vcr~= e~ e~ (5.28) 
R ~ r  

A naive way to combine (6.6) and (6.8) is to try a minimal type "rela- 

tivistic Coulomb interaction" by writing down the Hamiltonian constra- 

int 

Surprising as it may look, it turns out that this expression leads 

indeed to correct results provided that r is not too small. Actually, 

as it will be shown in Sec. 8C in the framework of the quasipotential 

approach to quantum electrodynamics, the electromagnetic interaction 

"Hamiltonian" Hem , derived from the 1-photon exchange 2diagram' dzf- 

fers from HCoul only by a term of the order of (ele 2) (wr2) -2 for 

r > o (it comes from the square of the vector potential): 

Me,, = H~e+v~ r V ~ ~A (_9,_/,)+ F_I/'+ ±V"t/x,  ",w'r" ........ 4) = 0 .  (5 .3o)  

Although the addition to Hcoul is negligible classically at large 

distances and leads to higher order corrections to the quantum energy 

levels if treated perturbatively, it affects in a qualitative way the 

short distance behaviour of the interaction function 

4w~r ~ ~ ~'rw (5.31) 

$~,~= H~- Ho = E V- 

where ~ is the fine structure constant: 

~< : (5.32) 41t 
• o (  ~" . 

Indeed, the leading singularzty of ~Coul for small r , - ~-~ ms 
ar 2 2 attractive and presents a problem for small angul momentum (~ ~ ~ ). 

~z 
The correction @em-@co~[-- ~ being dominant at small distances and 

repulsive, makes the entire'~'~interaction term bounded below. It may also 

lead to new (non-perturbative) physical results in problems in which 

short distances become relevant (cf. B2) ). 

For fixed w the constraint 
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H = (5.33) 

has the same structure (in particular, the same p-dependence) as a non-  

r e l a t i v i s t i c  H a m i l t o n ~ n .  This  o b s e r v a t i o n  a l l o w s  t o  e x t e n d  known non-  

r e l a t i v i s t i c  r e s u l t s ~  i n c l u d i n g  e x a c t  s o l u t i o n s ,  t o  t h e  r e l a t i v i s t i c  

case. 

6. Relativistic addition of interactions 

6A. The problem 

For a non-relativistic N-particle system an interaction that only 

involves two body forces is defined as a simple sum of 2-particle po- 

tentials. For a relativistic system such a simple minded procedure runs 

into conflictwith compatibility. For instance 3-particle constraints 

of the form 

o and c y c l i c  permutations 

where 

n ~ ~2 A 

(as proposed in 02) ) are not first class. One has to add appropriate 

many particle interactions to the sum of 2-body forces in order to 

obtain a consistent relativistic theory. We shall present two types 

of solutions to this problem. 

First, we shall work out (in Sec. 6B) an extension to the (classical) 

generalized mass shell framework of Sokolov's (quantum mechanical) pro- 

cedure for relativistic addition of interactions (see St), $6) ). As 

the argument is not very constructive (since it assumes the knowledge 

of Moeller's 2-particle wave operators) we also present (in Sec. 6C) 

an iterative solution (similar but not identical to the one given by 

Sazdjian 85) ). 

Remark. The separability condition for a 3-particle system in the pre- 

sence of 2-body forces implies that when one of the particles is taken 

to infinity the remaining two continue to interact. If this (strong) 

separability condition is abandoned, then one can construct compatible 

3-particle constraints of a rather uninteresting type (see 8ec. 6A of 

ref. T5) ). Mutze M~) has argued (in an alternative formulation of the 

relativistic many body problem) that only N-particle separable forces 

can appear among N interacting particles (if one of the particles when 

taken to infinity becomes free then the remaining N-1 particles also 
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become free). It appears that the assumptions underlying this result 

are unnecessarily strong. 

6B. Separable N-particle interactions in terms of classical wave 

operators 

~et H and H o be two Hamiltonians (i.e. two (Euclidean invariant) 

functions on phase space) and let L H and ~H be the corresponding 

~iouville operators (4.7). The classical wave ~or Moeller) operators 

are defined (whenever they exist) +) by the strong limits 

with respect to the ~4 norm 

n =I (6.3) 

This means that whenever f is a (say, smooth) function with a finite 

~ norm, we have 

Here q and p label the independent (physical) phase space coordina- 

tes. One should think, for example, of the variables ~a and ~a when 

the constraints are written in the canonical form (4.2) and the gauge 

o = 0 (4.1~) is adopted; in that case we have condition qab 

_ ~t_- ' ~  (6.5) 

translation invariance implying ~ k =  0 • 

The following easily verifiable~i~ertwining property of the wave 

operators is characteristic for them: 

~L~ e ~ h~o (6.6) ¢ w± = w± , L. W~ = W± L~o. 

What is, however, important for our subsequent discussion is the pos- 

sibility to reconstruct the totsl Hamiltonian H from the knowledge 

of H o and, say of w+ in the absence of bound states. 

+) We note that the existence of such operators is established for a 
wider class of Hamiltonians in the quantum theory, than in the clas- 
sical framework (see, e.g., the discussion on existence of global so- 
lutions of the classical equations of motion in R1)). The existence 
problem for a classical S-matrix is studied by Hunziker HS) . 
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Let the Hamiltonian H = H o + ~ admit no bounded motion. Techni- 

cally, this means that if q(t), p(t) is a solution of the equations 

of motion 

then 

h~ ~t~to,~t~))=0. (6.7) 

(Physically, EQ. (6.7) is an expression of the hypothesis that parti- 

cles get far apart for t~ and that the interaction is assumed to 

vanish for such asymptotic configurations.) This property will certain, 

ly be satisfied for (separable) repulsive potentials . Under this as- 

sumption we shall prove that 

W+ Ho = g (6.8) 

(w+ could be replaced by w_ 

t-.-~ ). 

First we note that since 

if the limit (6.7) were zero for 

e - L"o { = + + (6.9) 

we have g -%LR° ~o - ~o so that 

t a k i ng  the s t rong  l i m i t  t - ~  ( a f t e r  app ly ing  both s ides of  the l a s t  

equat ion  to  a smooth o~ 1 - f u n c t i o n  f ( p , q )  ) and us ing (6 .7 )  we ob ta in  

(6.8). 
It is straightforward to construct compatible constraints in terms 

of the (classical) wave operators in a Euclidean (more precisely 

~{1 x E(3) where ~' is time translation) invariant canonical Ha- 

miltonian theory for which the wave operator W+ (h, h o) exists, where 

in the equal time gauge 

- -  - - -  - -  ~ = 4  

and h does not admit a bounded motion. To this end one sets 

The compatibility condition follows from the identity 

~_~,..., ~. (6.11) 
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Eq. (6.12) is implied by the fact that e tLH generates a canonical 

transformation which commutes with the Poisson brackets: 

~L~ e C~,~) = { ~L,~, * L ~ ] .  (6.13) 

If w+ is Poincar~ invariant, we can also assert that the surface ~, 

given by the constraints (6.11)~ will be Poincar~ invariant. 

The problem is to construct a w+ corresponding to 2-body forces. 

To this end we shall first write down an alternative representation for 

the 2-particle wave operators. 

Let hab = h a + h b be the canonical 2-particle Hamiltonian for par- 

ticles a and b , where the constraints ~= 0 = q~ are assumed 

to satisfy conditions (i) (ii) (iii) of Section 4A . Let further 

~b=~÷~4~ ) where &~ =V~:@~ ~ +V~:+~ ~ • (6.1~) 

~k) be written in the form Then the operator ~÷ ~ W÷(~&, can 

• I = - - , ~  I ,  

where T stands for the antichronological product and 

(6.15) 

(6 .16a)  

so that 

L v~ (,> - L Vj (6.16b) 

The "interaction picture formulas" (6.15) and (6.16) follow from the 

finite-time relation 

e~ Lw.,, -'~ LhL T ~, I~ Lv,.,(*)"~ • e = e~ . (6.17) 

(In order to prove this last relation one verifies by differentiating 

with respect to t that both sides of Eq. (6.17) satisfy the same first 

order differential equation with the same initial condition.) 

Proposition 6.1. Let, for a fixed Lorentz frame 

V(~:) = 7"- ~. (~) ; (6.18) 
1&4z&(N 

t hen  we d e f i n e  the  N - p a r t i c l e  wave o p e r a t o r  
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(6.19) 

(assuming again that the right hand side makes sense as an operator on 

~I ) " claim satisfy all condit- We that then the constraints (6.11) 
ions (i)-(iii) of Sec. 4A. 

Sketch of the proof. Compatibility is a consequence of (6.12). 

Cluster follows from the additivity property 

Lv= (6.2o) 
and from the assumed separability of Vab (i.e. from Vab--~ 0 for 

tab = (q~b + (~b qsb )2)~2 ~ ~ )" Lorentz invariance can be deduced 

from the Birmann-Kato invariance principle (cf. also the work of Soko- 

lov sa), S6) ). 

6C. A series expsnsion of N'particle constraints in terms 2-bod~ 

forces 

We shall look for manifestlyPoincar~ invsriant N-particle constra- 

ints 

where 

N 

~ is a 2 -par t i c le  "potent ia l "  of type (6.1) ,  and "~  is a sum of 
n-particle interaction (5~ n ~ N) to be determined from the compatibili- 

ty condition 

Assuming that the 2-body terms Cab are proportional to a (small) 

parameter ~ab = ~ , we look for solutions ~of Eq. (6.25) that are 

second order in the ~ "s . 

Setting 

N 

= TA ~ +... where ~A = 0(~ (6.24) 

we deduce from (6.25) a recursive system of equations for ~(~:) : 
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(6.25b) 

etc. 

A crucial device for finding an explicit solution of Eq. (6.25a) is 

the introduction of the 2-particle vector valued function Bsb , anti- 

symmetric in a,b, which satisfies 

where Bab = Bab (Eab' T£ab ' Wab )' 

%= %,,,÷ x , .  = t',-+ (6.27) 

(Q~ = I~bJ ) , Wab and ~ab being defined in Eq. (6.1) . 

Given Bab we verify that 

--~ " ~  '~f~, (6.28) 

is a solution of (6 .25a)  (as a consequence of ( 6 . 2 6 ) ) .  

The functions Bab can be constructed as follows: 

^ 

where 

and ~ab is the (relative) angular momentum of the system (ab): 

(6.29c) 

We observe that the solution (6.28) for ~only involves 5-body 

forces (it is, therefore, consistent to postulate that n-body forces 

for n ~4 are of higher than second order with respect to the 2-par- 

ticle coupling constant ~ ). This solution is symmetric in the varia- 

bles (qb , pb ) b ~ a . As far as the B-function vanish for infinite 

particles" separation (provided that ~ and ~ tend to zero for ~r 
W--~ ~ ) it satisfies evidently the cluster decomposition requirement. 

In the important special case of the first order in ~ contribution 
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to the (relativistic) Coulomb potential (5.31), 

= -  , ~b= e~eb , E4~= ~ ' ~ - ~ . , ~ - ~  (6.3o) 

we obtain the simple expression 

We end our discussion with a couple of remarks. 

The solution of the system (6.25) is clearly not unique. At each 

step the functions ~C) are determined up to a solution of the system 

of linear homogeneous equations 

(6.31) 

i;t;',) L - = o . 

The general solution of (6.32) is 

(6.32) 

where "~Wis an arbitrary smooth function of the phase space variables. 

The problem of finding optimal additional restrictions on ~ (such as 

appropriate Cauchy data on certain surfaces), which would lead to a 

unique ~ iS, to our view, open. The "initial condition" adopted in 

$3) is not satisfied by our solution (6.29). We also have not discus- 

sed the relation between the wave operators approach of Sec. 6B and 

the special iterative solution of the present subsection. An application 

of Eq. (6.28) (or(6.31))to a realistic 3-particle problem with electro- 

magnetic interaction (in the lines of B1) ) may be the most practical 

way to overcome the remaining ambiguities. 

7. Gauge dependence of canonical world lines and ~au6e invariance of 

asymptotic results 

7A. GauRe dependence of canonical worl~ lines for two interactin6 

particles 

We saw in Sec. 5 that there is a wide class of generalized 2-particle 

mass shells, which include good candidates for a realistic (manifestly 

covariant) 2-particle dynamics, say, in the Markov-Yukawa gauge (5~27). 

The question arises whether the "world lines" in the space of canonical 

coordinates ql and q2 depend on the choice of the Lagrange multi- 

pliers %1 and ~ 2 in the definition of the Hamiltonian 
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The answer to this question is negative. For ~a given by (5.1) (5.15) 

the canonical world lines are gauge invariant only in the case of zero 

interaction ~ . (That is a consequence of the nontrivial dependence 

of the orthogonal distance r (5.16) on the total momentum P , which 

implies that 

More generally, the following negative result was established in M3). 

Theorem 7.1. Let ~ be a generalized 2-particle mass-shell, satis- 

fying conditions (i) and (ii) (but not necessarily (iii)) of Sec. ~A. 

The pro~ection ~ of each 2-dimensional fibre ~@c~ of the bundle 

~-~P# into th e (canonical) Minkowski space M of each particle 

(~a(ql'Pl;q2'P2) = qa • a = 1,2) is a 1-dimensional submanifold of 

M a iff /~ is (locally) physically equivalent to a free particle mass 

shell~ so that the q-space trajectories of the particles are straight 

lines. 

Sketch of the proof:In one direction the theorem is trivial. If the 

constraints are given by 

i.e. if they are obtained from the free mass shell by a canonical trans- 

formation of type (~.12) or, more generally, if 

9~q = O =9~" • (7.2) 

then ql does not depend on the "proper evolution parameter" 0" 2 of 

the second particl e and vice-versa: 

Hence, the pro ject ions ~ = T ~ ,  of the f i b re  ~ are 1-dimensional. 
The converse statement ( tha t  the requirement 

implies (7.1) is both more interesting and more difficult to establish. 
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Its proof can be split in two steps. The first one is simple and works 

for the N-particle case. 

Lemma 7.1. If the world lines are l-dimensional, then 

_ = o for 

(where ~ are given by (4.2)). 

Proof of Lemma 7.1. Choose ql ° o ' .... ' qN as evolution parameters 

on the world lines ~l' .... , e N . Condition (7.#) implies that we can 

take these parameters as local coordinates in the fibre. Since ~a is 

1-dimensional, all tangent vectors to it are proportional; hence 

{~f,~ = ~ i~ e,6= A, ~ (no sum!) (7.6) 

The coefficients Bab may depend on the point ~&~ but not on the 

Lorentz index ~ . Since, according to (4.2), 

= (7.7) 

it follows that Bab = ~ab . Lemma 7.1. is proven. 

The second step in the proof of Theorem 7.1. is much more involved 

and only works for N = 2 . 

Lemma 7.2. The canonical constraints (~.2), satisfying the Lorentz 

invariance condition (~.II) and compatibility along with (7.~), can be 

replaced by equivalent constraints of type (7,1). 

The reader interested in the proof of this Lemma is referred to the 

original work of Molotkov and the author MS). We shall limit ourselves 

at this point to a couple of remarks. 

The (omitted) proof of Lemma 7.2. could be extended to a N parti- 

cle system provided that the N(2N-1) scalar products of the 2N-1 

translation invariant vectors Pa and qab = qa - qb are independent. 

In a D-dimensional space time this is only true for 

~ 4~ - 4 (7.8) 

Hence, for D=4 , it only works for N ~ 2 . (In a 2-dimensional space- 

time the proof of Lemma 7.2. does not work even in the 2-particle case. 

Moreover, an example given in Sec. IIO of ref. MS) demonstrates that 

there exists a class of non-trivial gauge invariant dynamics for D=2 , 

involving a zero-mass particle.) For larger N (violating condition 

(7.8)) the following weaker result takes place. 



248 

Theorem 7.2. Let the generalized N-particle mass-shell satisf~y 

condition (6.4) of Theorem 7.1 and let in addition the canonical Hamil- 

tonian ~(~,..~ ~4$,_.~..~) (~ ~) be non-degenerate in the 
sense that 

~9t ~ ~ 0 (4,~:4,Z,~ ~ ~,b=~,...,~) (7.9) 

(the left-hand side standin 5 for the determinant of the 5N x 5N matri~ 

of second derivatives of the Hamiltonian). 

Then the (canonical) Minkowski space trajectories of all particle 

are straight lines. 

The rather technical proof of this theorem is a straightforward 

extension of a similar argument by Leutwyler LS). 

Note that the Hamiltonian of a free zero mass particle violates 

the non-degeneracy condition (7.9). 

Finally, we remark that the proof of Theorem 7.1. is local and uses 

smoothness in open neighbeurhoods. Therefore, it does no apply to boun- 

dary points of the generalized mass shell. If we define the generalized 

2-particle mass shell as 

then we will have a gauge invariant description 0felastic scattering 

of relativistic balls with piecewise straight world lines (see Sec. 

1C of ref. M3), as well as TS) ). 

7B. Relation to the Curr~-Jordan-Sudarshan (CJS) "no-interaction 

theorem". 

Theorem 7.1. is the counterpart of the (by now classical) "no-inter- 

action-theorem" of refs. C~), L3), HS). In order to elucidate the pre- 

cise relation between the two results, we start with a concise formula- 

tion of the CJS statement of the problem and main theorem. 

A CJS N-particle system is defined by a Poisson bracket realization 

of the Lie algebra of the Poincar~ group in the phase space ~C = R6N 

spanned by the 5-dimensional particle coordinates q_a and momenta 

~b (a,b = I,...,N) and equipped with the canonical symplectic form 

= ^ (7 .11)  

The Euclidean generatores P and J (= ½ $~,~jjk) are assumed to 

have the standard ("free") form (4.~) and (4.10), while the Lorentz 

boosts joi and the Hamiltonian pC = h are required to satisfy the 
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so called "world line condition" (in the terminology of C@) G2) ) 

jo~ ; 

A CJS system is called non-degenerate if the equation ~a = ~q_a ' h~ 

~a(~,~) can be solved with respect to the canonical momenta ~a 

(or, equivalently, if Eq. (7.9) takes place). 

CJS Theorem C@), L3) . Every CJS 2-particle system, and every non- 

degenerate N-particle system for N ~3 , is canonically equivalent to 

a free CJS system (with Hamiltonian h = h o ~  m~z~+~t ). 

Remark. The CJS theorem was originally established in four space-time 

dimensions. It fails in two dimensions unless one adds extra assumptions 

(0@), H3) ) • 

Given a generalized N-particle mass shell ~ there is a natural 

condition under which one can construct a CJS system. Assume that the 

intersection of /~ with the equal time gauge qa ° = t , a = 1,...,N 

coincides with R 6N (and is a global section of the fibre bundle 

~---r~ ). if we define the Lorentz boosts by 

• (7.13) 

which is consistent with (4.10) and (4.2) for t=O, then the world line 

condition (7.12) is a consequence of our assumption (7.4) of gauge in- 

variance of the world lines. Indeed, according to Lemma 7.1 , 

{qa ' hb~ = 0 for a # b ; hence, 

b 

i n  accord w i t h  ( 7 . 1 2 ) .  Thus Theorem 7.1 can be ob ta ined  from the OJS 

theorem (us ing  Lemma 7.1 and the above argument) p rov ided  t h a t  the 

i n t e r s e c t i o n  of  ~ w i t h  the equal  t ime gauge i s  R 6N . 

7C. Non-canonical position variables and gauge invariance of asymp- 

totic results. 

Three ways out of the difficulty, signalled by the results of the 

preceeding subsection, have been discussed in the literature. 

One, consists in introducing a privileged gauge, like the Markov- 

Yukawa condition (5.27). Then, of course, we shall have well defined 

Poincar~ covariant world lines (the Hamiltonian being fixed up to an 

overall factor). The disadvantage of such an approach is that it seems 

to be at odds with the cluster decomposition property in the many par- 

ticle case. (See, however, the discussion of this point in the Lagran- 
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gian approach, advocated by Professor Longhi in these Proceedings.) 

The second one introduces ~on-canonical position variables 

- ~(A (~4,--.,@~ ~ ~,...~N) such that 

{ ~ , q ~  = o for ~ 6  (7.15) 

(wich thus would have gauge invariant world lines). 

We assume in addition that x a is a ~-vector which coincides with 

qa asymptotically (for ~ - , ~ -  ~ ). 

In the 2-particle case (in S-dimensional space-time), when the ge- 

neralized mass-shell is given by the constraints (5.1) (5.12), it is 

convenient to demand in addition that 

~ = ~ for ~ = O , ~=4,z (7.15) 

as proposed by Droz-Vincent D5) and Sazdjian $2). Then one can write 

x a in the form 

~,,=%.~/1,,~ + ' I ~  +c~(~ , - ( t ,~ )~ -  ) ; ,~-_.,~,~ (7.16a) 

where p is the relative momentum (satisfying p P~O ) , and 

^ A I ?-- 4-- "£ ~- - ~. ~..,. ( - ~  ,~= ~ ' )  (7.16b) 'M/" i 

while the coefficients 

in the variable 

A a , B a , C a can be written as power series 

such that A a = 0(~) , B a 

see N1) 

~V" (7.17) 

= 0(% t) , and C a = 0(~ $) (for ~--~0) 

Such a distinction between physical positions and canonical coordi- 

nates is justified -as explained already on the example of a free spin- 

ning particle in Sec. 3 • It, however, leaves little of the original 

simplicity of the constraint Hamiltonian approach. Therefore, it is 

important to realize that one can extract gauge invariant (and physi- 

cally interesting) asymptotic results directly from the canonical sche- 

me. 

We have already introduced in Sec. 6 the classical wave operators 

W! (H, Ho) . The reparametrization (or gauge) invariance is one of 

their basic properties. In the 2-particle case, fo~ /~ given by (5.1) 

(5.15), it is a consequence of the elementary identity 
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e~LH÷~@ e "eLH.,A ~ : e~LH ~ Lwo 

valid for { ~ , ~  = 0 = (~o '~}  " In general, this is the physicsl con- 
tent of the Birmann-Kato invariance principle which says that for a 

wide class of smooth monotonously increasing functions F (5) on the 

reals (such that Fs(E)> 0 everywhere) 

(7.18) 

(This principle, originally established in the quantum mechanical fra- 

mework, was justified in the classical context by Sokolov $5).) The 

gauge invariance of the classical scattering operator is then a conse- 

quence of the relation 

~= w**w_ . (7.19) 

The gauge invariant asymptotic results also include the quantum mecha- 

nical bound state energy levels (which appear as poles of the scatte- 

ring amplitude). 

8. quasipotential approach to the two-body problem in quantum electro- 

dynamics. 

8A. Quantization of the relative 2-particle motion 

In order to make contact between the constraint Hamiltonian forma- 

lism and the quasipotential approach to the relativistic 2-body problem 

(developped in L6~ 7) T3) F2) R3,#) it is sufficient to consider the 

quantization of the relative 2-particle motion, regarding the total 

momentum P as an external parameter (analogous to the energy E in 

the stationary non-relativistic Schr~dinger equation). We shall res- 

trict our attention in the present lectures to this simple part of 

the problem of quantization. One way to deal with the much more com- 

plicated general problem is described in the work of Droz-Vincent, and 

of Horwitz and Rohrlich, presented at this Workshop. 

Consider the (locally convex) topological vector space ~p of in- 

finitely smooth functions ~(q) = ~(q,P) which decrease fast in the 
A 

variable ql = q + (q P) P and satisfy the differential equation 

~, ~- ~. c~.~) = o (~° > I Z l ) .  (8.1) 

Here q = ql - q2 is the relative canonical coordinate; as we know, 

the general solution of Eq. (8.1) is a function of q~ and P . 
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T, et n be an arbitrary time-like vector normalized by 

= ,  ~ ~ '=-~)  

then the scalar product 

(8.2) 

(8.3) 

does not depend on n . Indeed, every solution of Eq. (8.1) can be 

written in the form 

(8.4) 

inserting (8.4) into (8.3) we obtain the manifestly rL-independent 

expression 

(~,~) = (~ - ' J  ~ .~ , i .  ~c~P~. ~ )  a~ t . (8,~) 

Boundstate wave functions (corresponding to discrete "eigenvalues" of 

~= ~= ) are vectors in the Hilbert space completion ~p of ~p. 

We say that a dynamical variable is a relative observable if it 

commutes with the operator p r~_~ in the left hand side of equation 

(8.1). The variable q& , the o~thogonal (to P ) coordinate differen- 

ce, is such an observable and so is the relative momentum operator 

They satisfy the commutation relations 

on solutions of (8.1 I.(8.6) 

The space ~p i s ,  so to  speak, the leav ing  room f o r  a l l  systems whose 
generalized mass shell lies on the hypersurface pP = 0 . For a given 

interaction (an energy and angular momentum dependent "quasipotential") 

@ (r, ~, ~ ) (r = lqll ) we shall write the stationary Schr~dinger 

type equation 

In the centre of mass frame, setting 



we arrive at the 3-dimensional equation 

w h i c h  i s  e q u i v a l e n t  t o  a l o c a l  d i f f e r e n t i a l  e q u a t i o n  f o r  t h e  p a r t i a l  

waves ~ (~-,me) : 

8B. Reconstruction of the quasipotential for a given Feynman expan- 

sion of the scatterin G amplitude 

The question arises: can we construct an interaction function 

such that the Schr~dinger equation (8.10) would reproduce, e.g., the 

correct energy bound-state level corresponding to a given (local) 

quantum field theory? The answer is yes and the route to the construc- 

tion passes through a relativistic Lippmann-Schwinger equation for the 

2-particle scattering amplitude. 

Consider the elastic scattering of two particles of masses m I and 

m 2 , with inital momenta Pl in = Pl ' P2 in = P2 and final momenta 

pl f , p2 f . The invariant scattering amplitude T is defined in terms 

of the 2-particle S-matrix element as follows: 

where we use the following invariant normalization for the 1-particle 

states: 

The symmetric (partial) off mass shell extrapolation of 

satisfying 

= (#r-C D = (8.13) 

can be r e g a r d e d  as a f u n c t i o n  o f  t he  t o t a l  momentum 

(8.12) 

T to momenta 
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and the two (orthogonal to P ) relative moment~ 

We postulate for T the following (relativistic 

type equation: 

momenta 

; ~,=I + ,- t £p=0= 
- 4Wa 

(8.15) 
istic) Lippmann-Schwinger 

0 (8.16) 

where Gp is the Green function 

4 (8.17) 

This choice of Gp (k) is imposed by the following two requirements 

(a) We demand that for a hermitian K 

q~=~ where ~ (~,~) -- I~ 2 (~,~) . (8.18) 

Eq. (8.16) should imply the elastic unitary condition 

= ~ r+ + ;6k[~'~w~2+A, 

(b) We require that Gp I (p) is a second order (Poincar~ invariant) 

Local differential operator (for p = - i~--),. 

Under this assumption the corresponding homogeneous equation will 

be of type (8.8) (or (8.10)). 

The implication (8.18) ~(8.19) determines the discontinuity of 

the Green function. Indeed, writing equation (8.16) and its solution 

in the symbolic form 

T+q&+ ~¢~T = O (8.16") 

T =  4 K = -I~ 4 (8.20) 

we find (using K = K ~) 

T - T +  4 I t . _  = 

4 
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For G given by (8.17) the disc6ntinuity is 

(8.22) 

Inserting (8.22) in (8.21) and deciphering the short hand notation 

in the right-hand side we recover (8.19). 

In the centre of mass frame (8.9), setting T(w,~(o , pJ ; o, _P) 

= T w (pJ , p) etc., we arrive at the following 9-dimensional form of 

the relativistic Lippmann-Schwinger equation: 

%~,~ . t~ )  * *m,, c~*,l:) + 
I 4 ~I~ (8.2~) 

-,- .,,,.~ "%ur~,~). ~ ,_~.~)_, :o_ _ _ T,, (.~,,~). ~ n ) . _  =o .  

In order to exhibit the precise relation between Eq. (8.23) and the 

homogeneous Schr~dinger-like equation of type (8.8), we introduce the 

wave function ~p (~) corresponding to the scattering problem: 

_ _ _ e~t  {W._ ~ ¢o ). (~, ~)  (8.24a) 

where 

(8.2~b) 

Inserting in (8.23), we find 

In the case of a local quasipotential, for 

- 0 (8.25) 

(which has its part in the applications), Eq. (8.25) becomes a special 

case of (8.8) (or (8.10)) for 

(8.27) 
- I~(r)~(~p e~ ~__L 

C~,',)' 
The question of determining the interaction term ~ in the (quanti- 

zed) generalized mass-shell equation is thus reduced to finding the 
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kernel K in the Lippmann-Schwinger equation, On the other hand, for 

given perturbation expansion of the scattering amplitude 

T= T t ~ T z  + , . ,  ( 8 . 2 8 a )  

(where Tn i s  the term of  o rde r  n i n  the expans ion pa ramete r ) ,  
having, for example, the Feynman diagram expansion of T for a given 

quantum field theoretic Lagrangian, we can use Eq. (8.16) to obtain 

a corresponding expansion 

"~ = 1~i. + ~ z  ÷'  ", (8 .28b)  

for the kernel K . Inserting (8.28) in (8.16), we find 

~.I= -"r'f , " ~ =  - ' f z + ' f ~ " ' T ~  , etc. (8 .28c )  

With such a definition of K it would of course be a vicious cir- 

cle to try to solve (8.16) with respect to T in a perturbative way. 

However, if we are able to solve (8.16) or (8.25) (resp. (8.10)) 

exactly (or more generally, in a non-perturbative way) even for K = 

K 1 we will obtain an information about T (or~) which is not 

contained in any finite number of terms of the perturbation expansion 

(8.28a) . We shall see in the next Subsection how one can obtain a 

re&ativistic Balmer formula in this way. 

8C. Effective 4-potential for hydrogen-like systems. Fine structure 

of the energy spectrum 

In order to obtain a realistic application of the quasipotential 

equation we would like to determine in the lowest order in perturba- 

tion theory the effective potential V~ that enters the stationary 

(relativistic) Schr~dinger equation 

H, . ,~  =- ~ [~ • c = - z )  ~ - ~-~°~] ~ = o c8.29) 

which is the quantized version of the Hamiltonian constraint (5.50) 

(m w and E being given by (5.22) and (5.25), respectively). Using 

(8.27) and (8.28c) we would like to express the momentum space counter- 

part of the interaction function 

~ = 4EVo_ ~f,y}+ y~ Vo • (8.30) 

in terms of the Born diagram in the theory of two oppositely charged 

spinless particles. Keeping the first order in ~ terms in (8.30) we 

find 
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where 

W ~ 

( ~a = ~a ~, a = 1,~ ). 

(8.31) 

(We note that the on-shell expression for T 1 in the right-hand side 

of (8.31) is gauge independent.) 

It is clear that the 4-potential V~is not determined uniquely 

from (8.31), since adding to it any 4-vector orthogonal to (2E, p + ~) 

would not change the left-hand side of the equation. This gauge freedom 

can be used in order to identify V ° with the Coulomb potential: 

"V°C~,_~) = e~ (8.33) 

Using the last equation (8.32) and noting that on the mass shell 

la~) ~_ 4~ ~- ~_~ 
we find @L 

= - • 

For an appropriate choice of the 9-dimensional gauge we can write 

the following expression for the space part of the vector potential: 

Finally, we extrapolate the validity of (8.39) off mass shell (drop- 

ping the condition p# = k 2 /= b2(w)/ ). In the ~-space picture V~ 

is given by the pseudo-local expression 

~F%- ~-r ' -~'--~ ~w~'~r~ .Is = ~{ (8.35) 

where I s is the space reflection operator: I s ~(~) = ~ (-r) . 

The effective potential (8.30) turns out to be a local multiplication 

operator, since 

~" -_ ~ (8.36b) 
-- ~ ~'-r~ 
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This completes the evaluation of the operator Hem in (8.29) for 

spinless charged particles and can be used for calculating the fine 

structure corrections in that case (see T3) R3) ). By the same type of 

reasoning one can also derive the following expression for the case 

particle 1 has spin ~ , while particle 2 is still spinless (see when 
~) ): 

H, .=  - ~ [a*~%D- ~ i w" w - "  
- T~tr~ 

~L 
+ x  ~ - ~ c )  + (4 • L = (8.37) 

Here E 1 and E 2 are the centre of mass energies of particles 1 

and 2 (given in (8.32)), ~= ~A~ = -i~^~ is the orbital angu- 

lar momentum, ~j are the Pauli matrices. (The terms in the second 

line of the right-handside of (8.37) disappear for spinless particles.) 

A standard evaluation of the energy eigenvalues leads to the following 

result: 

( M=-,,-., (8.38) 

The right-hand side of (8.38) gives the correct expression for the 

energy eigenvalues up to order ~$ . This has been verified by evalua- 

ting higher order Feynman diagrams contributions to the quasipotential 

(see R$) ). The possibility of obtaining the correct fine structure 

of the energy spectrum using only the single photon exchange diagram 

justifies a p0steriori our choice of gauge which led us to a local 

expression for the effective potential (8.30). 

9. Concludin~ remarks 

In the preceding pages we have argued that there exists at present 

a self-consistent relativistic particle mechanics, both classical and 

quantum, which clarifies old puzzles and PrOvides a background for 

practical 2-particle calculation. This does not mean, of course, that 

the subject is essentially closed. We would like to mention here some 

problems which require (and merit) additional study. 

There have been two ways of deriving an expression for the electro- 

magnetic forces between two (point) charged particles. One, pursued 

by Bel and colaborators B3-5), starts from classical electrodynamics 

and the corresponding retarded interaction. The second extracts the 

same type of information from quantum electrodynamics in the framework 

of the quasipotential approach (reviewed in Sec. 8 of these notes). 
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A systematic comparison of the results of thesetwo approaches should 

be instructive. 

The study of three and mere particle dynamics still leaves much to 

desire. There is no coherent treatment of the problem of scattering on 

(and destroying ) a bound state in the constraint Hsmiltonian approach. 

The quantization of 3-particle interactions of type (6.28) (6.29) poses 

a non-trivial ordering problem. (That is a part of the general problem 

of quantizing constraint dynamical systems which is still in its in- 

fancy.) 

Application of the quasipotential approach with a Richardson type 

of interaction R2) undertaken by Crater C3) (see also A1) ) seems 

quite promising and should be pursued in a more systematic way. 

I would like to thank Professors X. Fustero, J. Gomis and J. Llosa 

for their hospitality at the Workshop on Relativistic Action-at-a-Dis- 

tance in Barcelona, where these lectures were presented, as well as 

Professor Philippe Blanchard and Professor Ludwig Streit for their 

hospitality at the University of Bielefeld where these notes were 

written. Numerous discussions with practically all lecturers and with 

many of the participants of the Barcelona Workshop are also gratefu- 

lly acknowledged. 
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